
FINITE AND INFINITE PACKINGSUlrich Betke, Martin Henk and J�org M. WillsAbstract. Let K � Ed, d � 2, be a centrally symmetric convex body with volumeV (K) > 0 and distance function f . For n 2 N let Pn(K) = fCn � Ed : Cn =fx1; : : : ; xng; f(xi � xj) � 2; i 6= jg, i.e. Cn + K, Cn 2 Pn(K), is a packing of ntranslates of K. For � � 0 let�(K;n; �) = max fn � V (K)=V (conv(Cn + �K)) : Cn 2 Pn(K)gbe the density of a densest packing of n translates ofK, where � controls the in
uenceof the boundary. We show that for � � 2lim supn!1 �(K;n; �) = �(K);where �(K) is the classical densest in�nite packing density of K. So we get a newapproach to classical packings. For d = 2 we generalize classical results by Rogers,Oler and Groemer. We further show that there exists a �d > 0 only depending onthe dimension such that for � � �d �(K;n; �) is attained if conv(Cn) is a segment,i.e. if conv(Cn + �K) is a "sausage". In particular we prove L. Fejes Tth's sausageconjecture for d � 13:387 0. IntroductionThroughout this paper Ed denotes the d-dimensional Euclidean space and theset of all centrally symmetric convex bodies K � Ed | compact convex sets withK = �K | with non-empty interior (int(K) 6= ;) is denoted by Kd0 . Bd denotesthe d-dimensional unit ball with boundary Sd�1 and conv(P ) denotes the convexhull of a set P � Ed. Further, the volume of P with respect to the a�ne hull of Pis denoted by V (P ) and for K 2 Kd0 let �(K) be the density of a densest packingof translates of K (cf. [GL], [CS], [FK]).In this paper we consider �nite and in�nite packings of translates forK 2 Kd0 . Tothis end we introduce for n 2 N the set Pn(K) of all possible packing arrangementsof n translates of K, which can be de�ned byPn(K) = fCn � Ed : Cn = fx1; : : : ; xng; fK(xi � xj) � 2; i 6= jg;where fK : Ed ! R denotes the distance function of K, i.e. fK(x) = minf� � 0 :x 2 �Kg. So for Cn = fx1; : : : ; xng 2 Pn(K) we have int(xi+K)\ int(xj+K) = ;,1991 Mathematics Subject Classi�cation. 52C17, 05B40, 11H06, 52A40.Key words and phrases. �nite packing, in�nite packing, critical determinant, Voronoi-cell.We wish to thank K. B�or�oczky, Jr., L. Danzer, G. Fejes T�oth, J. Rush and the referee forhelpful comments and suggestions Typeset by AMS-TEX1



2 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSi 6= j. It turns out that the case dim(conv(Cn)) = 1 plays an essential role; so weintroduce a special notation: For u 2 Sd�1 and K 2 Kd0 we call Sn(u;K) =fx1; : : : ; xng 2 Pn(K) a sausage arrangement in direction u i� xi = 2i �u=fK (u) for1 � i � n. In the special case K = Bd we have that V (conv(Sn(u;Bd) + �Bd)) isapparently independent of u and thus we write Sn = Sn(u;Bd) for some arbitraryu 2 Sd�1. In this paper we consider the following functionalsDe�nition 0.1. For K 2 Kd0 , n 2 N and � 2 R�0 let�(K;n; �) = max� n � V (K)V (conv(Cn + �K)) : Cn 2 Pn(K)� ;�(K; �) = lim supn!1 �(K;n; �):�(K;n; �) and �(K; �) can be interpreted as packing densities with a parameter� which controls the in
uence of the boundary.In section 1 we show some simple but basic results; in particular the close relationbetween �nite packing densities and classical packing densities. In section 2 we givefor d = 2 a description of �(K;n; �) and �(K; �) by other functionals (Theorem 2.2).The proof is based on a lower bound of V (conv(Cn + �K)) (Theorem 2.1), whichgeneralizes classical results by Rogers, Oler and Groemer. From De�nition 0.1we get �(K) � �(K; �) � 1 for 1 � � <1: (0.1)For � < 1 we may have �(K; �) > 1. In section 3 we prove that �(K; �) = �(K)for � � 2 (Corollary 3.1). This statement is an easy consequence of a more generalresult for arbitrary convex bodies (Theorem 3.1). Thus we obtain a new approachto classical in�nite packings by translates.For d = 2 Rogers [R1] proved �(K; 1) = �(K) = �L(K), where �L(K) is thedensity of a densest lattice packing of K. For d � 3 no such result can be expectedfor arbitrary K. For this let Z 2 Kd0 be the cartesian product of Bd�1 and a segmentof length 1, say in direction ed 2 Sd�1, thenV (conv(Sn(ed; Z) + Z)) � V (conv(Cn + Z)); Cn 2 Pn(Z);and in contrast to Rogers' result we obtain �(Z; n; 1) = �(Z; 1) > �(Z). Thusthe behaviour of �(K; �) for � = 1 is completely di�erent from the case � � 2. Anice example for such linear arrangements in usual 3-space is the densest packingof equal coins.A conjecture in the same spirit is L. Fejes Tth's [F] famous "sausage conjec-ture": For d � 5, � = 1 and n 2 NminfV (conv(Cn + �Bd)) : Cn 2 Pn(Bd)g = V (conv(Sn + �Bd)): (0.2)Several partial results support this conjecture (e.g. [BGW], [BG], [FGW], [B�o1],[B�o2], [B�o3], [B�oH]), but until now it was not proved for any dimension. In section4 we show that (0.2) even holds for all � < 2=p3 and su�ciently large d (Theorem4.1). In particular we show that the sausage conjecture (� = 1) is true for d � 13:387(Theorem 4.2).Finally, in section 5 we show that for small � a sausage arrangement is not onlybest possible for Bd with respect to �(K;n; �), but for every K 2 Kd0 there exists



FINITE AND INFINITE PACKINGS 3a function  (R(K)=r(K); d) > 0, only depending on the ratio of circumradius andinradius and the dimension, such that for � �  (R(K)=r(K); d) the maximum of�(K;n; �) is attained for a certain sausage Sn(u;K) (Theorem 5.1). This resultimplies that there exists a constant �d > 0 only depending on the dimension withthe same property (cf. Corollary 5.1).Remarks.(1) All results can be generalized to arbitrary (non-symmetric) convex bodies,but only for large � this can be done shortly and elegantly (cf. Theorem 3.1and Corollary 3.1).(2) Similar results hold for the restriction to �nite and in�nite lattice packings,which will be considered in a later paper, and similar ideas also work for�nite and in�nite coverings, but the methods seem to be di�erent.1. Basic PropertiesFrom De�nition 0.1 follows that the calculation of �(K;n; �) and �(K; �) requiresinformation on V (conv(Cn + �K)), which can be written as polynomial in � withthe mixed volumes Vi(conv(Cn);K) (cf. [BF] or [GL]) as coe�cients:V (conv(Cn + �K)) = dXi=0 �di��iVi(conv(Cn);K) (1.1)In particular V0(conv(Cn);K) = V (conv(Cn)), Vd(conv(Cn);K) = V (K) and Vi(conv(Cn);K) = 0 if dim(conv(Cn)) < d � i. Formula (1.1) is an essential tool inthis paper.For a sausage Sn(u;K) = fx1; : : : ; xng we have dim(conv(Sn(u;K))) = 1 andthus Vi(conv(Sn(u;K));K) = 0, i = 0; 1; :::; d� 2. Moreover, since fK(xi�xi+1) =2, 1 � i � n � 1, we get Vd�1(conv(Sn(u;K));K) = 2(n � 1)(fK(u))�1V (Ku),where Ku denotes the orthogonal projection of K onto a hyperplane with normalvector u (cf. [BF, p. 45]). HenceV (conv(Sn(u;K) + �K)) = 2(n� 1)V (Ku)fK(u) �d�1 + V (K)�d: (1.2)For K = Bd we get from (1.2) with V (Bd) = �dV (conv(Sn + �Bd)) = 2(n� 1)�d�1�d�1 + �d�d: (1.3)From (1.2) we obtain thatmax� n � V (K)2(n� 1)V (Ku)=fK(u)�d�1 + V (K)�d : u 2 Sd�1�is the density of a densest sausage arrangement of n translates of K. Since we areinterested in in�nte packings as limit of �nite packings we de�neDe�nition 1.1. For K 2 Kd0 let�S(K) = max�fK(u) � V (K)2V (Ku) : u 2 Sd�1� :�S(K) is the density of a densest "in�nite sausage arrangement" of K withrespect to � = 1. Observe, for arbitrary � the appropriate density is given by�S(K)=�d�1. With (1.1) and (1.2) we obtain some simple but basic results.



4 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSTheorem 1.1.(1) Let n 2 N and u 2 Sd�1 such that for � = �1�(K;n; �) = n � V (K)=V (conv(Sn(u;K) + �K)): (1.4)Then (1.4) holds for each � 2 [0; �1].(2) Let u 2 Sd�1 such that for � = �1�(K; �) = �S(K)=�d�1: (1.5)Then (1.5) holds for each � 2 [0; �1].(3) Let �2 2 R>0 such that for � = �2�(K; �) = �(K): (1.6)Then (1.6) holds for each � 2 [�2;1).(4) Let � 2 R�0 , n 2 N and Cn 2 Pn(K) such that �(K;n; �) = n � V (K)=V (conv(Cn+�K)). For every nonsingular a�ne transformation T : Ed ! Edwe have�(T (K); n; �) = n � V (T (K))=V (conv(T (Cn) + �T (K))):Proof. From (1.1), (1.2) and (1.4) follows2(n� 1)V (Ku)fK(u) �d�11 � d�1Xi=0 �di��i1Vi(conv(Cn);K):Since the mixed volumes are nonnegative the inequality holds for each � 2 [0; �1]and thus we obtain (1). (2) follows from (1) with n!1 and (3) is a consequenceof the observation (see (0.1)), that for each K and Cn V (conv(Cn+ �K)) increaseswith �. (4) is an immediate consequence of T (Cn) 2 Pn(T (K)). �Theorem 1.1 motivates the followingDe�nition 1.2. For K 2 Kd0 let�s(K) = sup�� : �(K; �) = �S(K)=�d�1	be the sausage radius of K and�c(K) = inf f� : �(K; �) = �(K)gbe the critical radius of K.Remark. Clearly �s(K) � �c(K), if �s(K) and �c(K) exist at all.In Theorem 3.1 we show �c(K) � 2 for K 2 Kd0 and in Theorem 5.1: �s(K) > 0;so for K 2 Kd0 0 < �s(K) � �c(K) � 2:From De�nition 1.1, 1.2 and (1.2) one gets the following simple result, which showsthe close relations between �s; �c; �S and �



FINITE AND INFINITE PACKINGS 5Theorem 1.2. �S(K) (�c(K))1�d � �(K) � �S(K) (�s(K))1�d :For K = Bd follows with �S(Bd) = �d=(2�d�1)Corollary 1.1. �d2�d�1 ��c(Bd)�1�d � �(Bd) � �d2�d�1 ��s(Bd)�1�d :Remark. Corollary 1.1 implies that any upper bound of �c(Bd) and any lower boundof �s(Bd) gives a lower and an upper bound for �(Bd). In particular Corollary 3.2,Corollary 4.2 and the inequality p2�=(d + 1) < (�d=�d�1) < p2�=d (cf. [BGW])imply that for every � > 0 exists a d(�) such that for d � d(�)r 2�d+ 12�d < �(Bd) <r2�3d � 2p3 � ���d :Though this is much weaker than the best known bounds for �(Bd) it shows that�nite packings are not only of interest in their own but also give a new approachto the study of in�nite packings.Theorem 2.2 iii) implies that �s(K) = �c(K) holds for each K 2 K20. For the unitcube Cd we obviously get: �s(Cd) = �c(Cd) = 1. But in general we can not expect�s(K) = �c(K) as the next simple result shows (cf. [Gr, pp. 43]):Theorem 1.3. For each d � 4 there is a K 2 Kd0 with�s(K) < 1 < �c(K):Proof. Let K 2 Kd0 be the cartesian product of the regular hexagon H and Bd�2embedded in the orthogonal complement of H. Clearly H generates a tiling of theplane. So for su�ciently large n 2 N V (conv(Cn+K)) is minimal if dim(conv(Cn))= 2. As this minimal Cn is neither 1-dimensional nor d-dimensional, we have�s(K) < 1 < �c(K). �But for the unit ball Bd we conjectureStrong Sausage Conjecture. For d � 1�s(Bd) = �c(Bd):This conjecture would imply the equivalence of the two problems of the determina-tion of �(Bd) and of �c(Bd).2. The 2-dimensional caseFor K 2 K20 let K be a minimal circumscribed parallelogram of K. Obviously wehave V (K) = V (K)=�S(K). Further for two convex bodies C;D � E2 let A(C;D)be the mixed area. Then (1.1) becomesV (conv(Cn + �K)) = V (conv(Cn)) + 2�A(conv(Cn);K) + �2V (K): (2.1)For abbreviation we set �(K) = V (K)=�(K). With this notation we have



6 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSTheorem 2.1. Let K 2 K20, n 2 N and Cn 2 Pn(K). For each � � 0V (conv(Cn+�K)) � (n�1)�(K)+2(��
(K))A(conv(Cn);K)+�2V (K); (2.2)with 
(K) = �S(K)=�(K). Further 3=4 � 
(K) � 1 with 
(K) = 1, if K is aparallelogram and 
(K) = 3=4, if K is an a�nely regular hexagon.Remark. With slightly di�erent notation special cases of (2.2) were already provedbefore. The �rst one was Rogers [R1]. He proved (2.2) for � = 1 and without thesummand with A(Cn;K). Rogers later [R2] gave a weaker inequality for arbitraryconvex bodies K � E2. Groemer [G] proved (2.2) for the special case K = B2and � = 
(B2) = p3=2. Oler [O] proved (2.2) for � = 0; from his result we deducethe general case. Folkman & Graham [FG] and Graham, Witsenhausen andZassenhaus [GWZ] gave easier proofs and generalizations to Minkowski planes ofOler's theorem. None of these authors made a remark on general �.Before we start with the proof we deduce from Theorem 2.1 the following resultson �(K;n; �) and �(K; �)Theorem 2.2. For K 2 K20 and n 2 Ni) (�(K;n; �))�1 = (1� 1=n)�(�S(K))�1 + (1=n)�2; 0 � � � 
(K);ii) (�(K;n; �))�1 � (1� 1=n)(�(K))�1 + (1=n)�2; 
(K) � � <1;iii) �(K; �) = � �S(K)=�; 0 � � � 
(K);�(K); 
(K) � � <1:Corollary 2.1. For K 2 K20 holds�c(K) = �s(K) = 
(K):Remark. For � = 
(K) various minimal con�gurations are possible; in particularalso linear arrangements ('sausages'). For K = B2 and 
(B2) = p3=2 this wasalready observed by Groemer (cf. also Wegner [W]).Proof. On account of (0.1) iii) is an immediate consequence of i) and ii). Further, ii)is an immediate consequence of (2.2) since � � 
(K). To prove i) we �rst consider� = 
(K). Let u 2 Sd�1 such that 2V (Ku)=fK(u) = V (K)=�S(K). Then by (1.2)V (Sn(u;K) + 
(K)K) = (n� 1)
(K)V (K)=�S(K) + (
(K))2V (K):This shows that for Sn(u;K) we have equality in (2.2). As for � = 
(K) the righthand side in (2.2) is independent of Cn i) follows. Now for � � 
(K) i) follows byTheorem 1.1 (1). �The proof of Theorem 2.1 is prepared by the following simple result.Lemma 2.1. K meets K in the four midpoints of its edges.Proof. Let K be minimal and let a; b; a0; b0 be the four edges of K with a parallelto a0 and b parallel to b0. Assume that the midpoint of b and hence of b0 does notmeet K. Then let a00 and a000 be segments parallel to a and a0 through the centre



FINITE AND INFINITE PACKINGS 7of K, with a00 having its endpoints on b and b0 and a000 having its endpoints on theboundary of K. If l denotes the length, then l(a00) > l(a000).Now let c and c0 be the two parallel segments tangent to K at the endpoints ofa000 with their endpoints lying on a�fag and a�fa0g. They generate with a�fagand a�fa0g a parallelogram set K 0. It followsV (K 0) = l(a000) � dist(a; a0) < l(a00) � dist(a; a0) = V (K):which contradicts the minimality of K. �Proof of Theorem 2.1. First we consider 
(K). Obviously �(K) � �S(K) andthus 
(K) � 1. Now, let H be a convex hexagon of minimal area circumscribedabout K and let H be a smallest circumscribed parallelogram of H, i.e. V (H) =V (H)=�S(H). Then �(H) = �(K) (cf. [EGH, p. 44] and 
(H) � 
(K).By Lemma 2.1 it follows that the edges of H meet H at their midpoints. If one(and hence two) of these midpoints is a vertex ofH, we can choose the correspondingedges of H such that they contain a corresponding pair of edges of H. So withoutrestriction we can assume that each of the four edges of H has a common a�nehull with one of the edges of H. So H and H have two common vertices, whereasthe four remaining vertices of H lie on the four edges of H.Obviously �S(H)=�(H) is minimal if these four vertices are the midpoints of theseedges. In this case H is an a�ne image of the regular hexagon and an elementarycalculation shows �S(H)=�(H) = 3=4. Thus we obtain the required properties of
(K).FromOler's Theorem 1 (cf. [O], p. 20) follows with a suitable change of notationV (conv(Cn))=�(K) + (1=2)MK (conv(Cn)) + 1 � n orV (conv(Cn)) � (n� 1)�(K)� 12MK(conv(Cn))V (K)=�S(K)
(K) (2.3)where MK denotes the perimeter in the Minkowski-space with gauge body K. Infact we do not need MK explicitly, because Oler showed in formula 6 on p. 48 of[O]: V (conv(Cn +K)) � V (conv(Cn)) + 12MK(Cn)V (K)=�S(K) + V (K):Hence (1=2)MK (conv(Cn))V (K)=�S(K) � 2A(conv(Cn);K) (cf. (2.1)) and to-gether with (2.3) it followsV (conv(Cn)) � (n� 1)�(K)� 2A(conv(Cn);K)
(K)which implies (2.2) by (2.1). �3. Relations between �(K;�) and �(K)In this section we prove a result for arbitrary (non-symmetric) convex bodies K.For this we give a de�nition of Pn(K) without the distance function. Let Kd � Edbe the set of all convex bodies and for K 2 Kd letPn(K) = fCn � Ed : Cn = fx1; : : : ; xng; int(xi +K) \ int(xj +K) = ;; i 6= jg:Now, let �(K;n; �) and �(K; �) for K 2 Kd be de�ned in the same way as inDe�nition 0.1. Further let �(K) be the density of a densest packing of translatesof K.



8 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSTheorem 3.1. Let K 2 Kd and � 2 R>0 such that int(K) \ int(y +K) = ; holdsfor all y =2 �K. Then for n 2 N �(K;n; �) � �(K):On account of (0.1), which is also valid for K 2 Kd, we have for such a � as inTheorem 3.1 �(K; �) = �(K). Hence we getCorollary 3.1. For K 2 Kd0 and � � 2 or for K 2 Kd and � � d+ 1 holds�(K; �) = �(K):Proof. Let K 2 Kd0 , � � 2 and y =2 �K. Assume int(K) \ int(y +K) 6= ;. Thenthere exist x; z 2 int(K) with x = y + z and thus y 2 K + (�K) = 2K whichcontradicts the choice of �.Let K 2 Kd. Since �(K;n; �) is invariant with respect to translations of Kwe may assume K + (�K) � (d + 1)K (cf. [R3, p. 43]). As above we obtainint(K) \ int(y +K) = ; for all y =2 (d+ 1)K. �Corollary 3.2. For K 2 Kd0 holds �c(K) � 2:The proof of Theorem 3.1 is based on the following idea: Assume that Cn+�K isa �nite packing with �(K;n; �) > �(K). Then a packing lattice � of conv(Cn+�K)with elementary cell Z is chosen. For every x 2 Z the lattice packing L(conv(Cn+�K) + x) = f(conv(Cn + �K) + x) + g : g 2 �g is superposed on a densest in�nitepacking fK + a : a 2 P (K)g with density �(K). Further all K + a, a 2 P (K),which meet L(conv(Cn + �K) + x) are deleted.A standard averaging argument with respect to x shows the existence of an in�-nite packing of translates ofK with density > �(K) which contradicts the de�nitionof �(K). Hence �(K;n; �) � �(K). The proof gives a careful analysis of this idea.Proof of Theorem 3.1. Let �(K) = V (K)=�(K). Assume there exist K 2 Kd,� 2 R>0 satisfying the assumption and an integer n with �(K;n; �) > �(K). Thenthere is a Cn 2 Pn(K) and an � > 0 withV (conv(Cn + �K)) = n ��(K)� �: (3.1)Let � be a packing lattice of conv(Cn+ �K). We may assume that conv(Cn+ �K)is contained in a �xed elementary cell Z of �. From (3.1) follows�1� V (conv(Cn + �K))det(�) � det(�)det(�) + � + n�(K)det(�) + � = 1:From this we get with �(K) < det(�) and multiplication with �(K):�1� V (conv(Cn + �K))det(�) � V (K)�(K) + � + nV (K)det(�) + � > �(K): (3.2)



FINITE AND INFINITE PACKINGS 9Now, for � > 0 let W� 2 Kd0 be the cube of edge length 2�. Apparently there is aconstant � only depending on Z such that for every � > 0 there is a subset L� � �such that W� + Z � L� + Z and L� + 2Z �W�+�.By the de�nition of �(K) (cf. e.g. [GL]) for every � > 0 there exists a setCm(�) 2 Pm(�)(K) such that Cm(�) +K �W� andlim�!1 m(�)V (K)V (W�) = �(K):Obviously lim�!1 V (W�+�)=V (W�) = 1, so there exists a � > 0 and a set Cm(�) 2Pm(�)(K) with Cm(�) +K �W� such thatV (K)�(K) + � � m(�)V (K)V (W�+�) and nV (K)det(�) + � � nV (K) card(L�)V (W�+�) : (3.3)For every x 2 Z we construct a �nite packing Cn(x) 2 Pn(x)(K) { for a suitablen(x) 2 N { with Cn(x) +K �W�+� in the following way:Cn(x) = fx+ L� + Cng [ fy 2 Cm(�) : y =2 x+ L� + conv(Cn + �K)g:The choice of � guarantees that Cn(x) is a packing. While it is di�cult to determinethe cardinality n(x) of Cn(x) for �xed x it is easy to calculate Rx2Z n(x)dx. To thisend for every y 2 Cm(�) let �y(x) = 1 for y =2 x+L�+conv(Cn+�K) and �y(x) = 0else. ThenZx2Z n(x)dx = Zx2Z �n card(L�) +Xy2Cm(�) �y(x)� dx= ndet(�) card(L�) +m(�) (det(�)� V (conv(Cn + �K))) :So there is a z 2 Z withn(z) � m(�)�1� V (conv(Cn + �K))det(�) �+ n card(L�)or n(z)V (K)V (W�+�) � m(�)V (K)V (W�+�) �1� V (conv(Cn + �K))det(�) �+ nV (K) card(L�)V (W�+�) :From (3.2) and (3.3) follows n(z)V (K)V (W�+�) > �(K):But this contradicts the de�nition of �(K) since Cn(z) +K �W�+�. �4. The sausage conjectureFor the sausage arrangement of n-balls with radius � we have (cf. (1.3))V (conv(Sn + �Bd)) = 2(n� 1)�d�1 � �d�1 + �d � �d: (4.1)The purpose of this section is to prove



10 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSTheorem 4.1. For every � < �m := 2=p3 exists a 'sausage'-dimension d(�) suchthat for d � d(�)minfV (conv(Cn + �Bd)) : Cn 2 Pn(Bd)g = V (conv(Sn + �Bd)):Corollary 4.1. lim infd!1 �s(Bd) � 2=p3:Theorem 4.2. d(1) � 13:387.Hence the 'sausage'-conjecture of L. Fejes T�oth is veri�ed for d � 13:387.The rather lengthy proofs of the results in this and the following section are basedon the following observation: Assume that Cn = fx1; : : : ; xng is not a sausagearrangement. We consider the Dirichlet-Voronoi-cell (DV-cell) H of x for somex 2 fx1; : : : ; xng. The deviation from the sausage arrangement is measured by aparameter �. Then Cn + �Bd has a sausage part and a part which is the cartesianproduct of a 2-dimensional set and essentially a (d� 2)-ball of radius �.The sausage part is of size �d�1�d�1(2 � const1�) and the other part is of sizeconst2�d�2�d�2�, where const1 and const2 are constants independent of d. Theresults follow from �d�2=�d�1 !1 as d!1.Proof of Theorem 4.1In the sequel let Cn 2 Pn(Bd) with Cn = fx1; : : : ; xng be an arbitrary but �xedarrangement and let � 2 [1; �m) (cf. Theorem 1.1). The proof is based on a carefulanalysis of the volume part which belongs to a DV-cellHi = fx 2 Ed : 2hx; xj � xii � jxj j2 � jxij2; 1 � j � ng; 1 � i � n;of the considered arrangement. Hi is called the DV-cell with respect to xi.Obviously, V (conv(Cn + �Bd)) =Pni=1 V (Hi \ (conv(Cn + �Bd))) and thus by(4.1) it is su�cient to show V (Hi \ (conv(Cn + �Bd))) � 2�d�1�d�1 for (n � 2)DV-cells and V (Hi \ (conv(Cn + �Bd))) � �d�1�d�1 + �d�d=2 for 2 DV-cells. Tothis end we consider a �xed DV-cell, say H = Hn with respect to xn = 0, andD� = H \ (conv(Cn + �Bd)). In order to obtain good lower bounds for V (D�) weneed a large 2-dimensional section. To measure this we introduce an angle �:De�nition 4.1. Let yj = xj=jxj j, 1 � j � n� 1 and let� = max1�k;l�n�1farccos(jhyk; ylij)g;where arccos(�) is choosen in [0; �=2]. Further let yj1 ; yj2 be de�ned byarccos(jhyj1 ; yj2ij) = ( �; if � � �=3 or hyk; yli � 0 for 1 � k; l � n� 1;max1�k;l�n�1farccos(jhyk; ylij) : hyk; yli � 0g; else:We may assume yj1 = y1; yj2 = y2 and observe that in the second case we have� cos(�=2) � hy1; y2i � � cos(�).



FINITE AND INFINITE PACKINGS 11Thus a small � indicates that in a neighbourhood of 0 the arrangement is like themiddle of a sausage (for hy1; y2i < 0) or like the end of a sausage (for hy1; y2i > 0).Clearly, for � < �=3 the last case can occur at most twice.Now, let L be the plane spanned by y1; y2 and C(�) = convf0; 2y1; 2y2g \ Bd.We observe C(�) � H \ conv(Cn). We distinguish several parts of D� according totheir position relative to C(�). To this end we use the nearest point map (cf. [McS]):For a convex body K � Ed the nearest point map p : Ed ! Ed with respect to Kis given by p(x) = y 2 K with jx� yj = minfjx� zj : z 2 Kg:Using the nearest point map with respect to C(�) we de�neDe�nition 4.2.D1� = clfx 2 D� : p(x) 2 relintC(�)g;D2� = clfx 2 D� : p(x) 2 relint convf0; y1g [ relint convf0; y2gg;D3� = clfx 2 D� : p(x) = 0g;D4� = clfx 2 D� : p(x) 2 relint convf2y1; 2y2gg:Clearly, V (D�) � P4i=1 V (Di�). The proof of Theorem 4.1 depends on variousestimates of the V (Di�). These estimates are prepared by the following two Lemmas.Lemma 4.1. Let w 2 H \ Sd�1, v 2 w? \ Sd�1, �; � > 0 with � � 1=(� + �) and(�+ �)v 2 H. Then c1(�; �) � convf0; wg + �v 2 H;with c1(�; �) = �=p(�+ �)2 � 1.Proof. The assertion follows with some elementary calculation from Bd � H andthe convexity of H. �Lemma 4.2. V (C(�)) � �=2.Proof. Let 
 = hy1; y2i, � = arccos(j
j) and conefy1; y2g be the positive hull ofy1; y2. First, suppose 
 � �1=2. Then conefy1; y2g \Bd � C(�) and thusV (C(�)) � �=2: (4.2)Next, assume 
 < �1=2 and letM be the set of points x with x 2 conefy1; y2g\Bdand x =2 C(�). Obviously, we have V (C(�)) = V (conefy1; y2g \ Bd) � V (M) andby elementary calculation we getV (C(�)) = � � �2 � � arccos(2 sin(�=2)) � 2 sin(�=2)p1� (2 sin(�=2))2 �:On account of arcsin(x) = �=2� arccos(x) substituting x = 2 sin(�=2) in the righthand side yields V (C(�)) � � � minff(x) : x 2 [0; 1]g with f(x) = arcsin(x) �3 arcsin(x=2)+xp1� x2. Now, f(0) = f(1) = 0, and for the second derivate f 00(x)we have f 00(x) � 0 for x 2 [0; 1]. Hence f(x) � 0 for x 2 [0; 1] and thus we getV (C(�)) � �: (4.3)If hy1; y2i � �1=2 we have � = � and in the case hy1; y2i < �1=2 we have � � �=2.Thus the assertion follows by (4.2) and (4.3). �Now, we start with the estimates



12 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSLemma 4.3. Let sin(�) � 1=�. ThenV (D1�) � �2 � c1(�; 1= sin(�)� �)2�d�2�d�2:Proof. By the de�nition of � we have jhyj ; yiij � cos(�) for 1 � j � n� 1, i = 1; 2.This implies hyj ; vyii � sin(�) for all vyi 2 ((yi)? \ Bd), i = 1; 2. Hence by thede�nition of H (1= sin(�)) � ((yi)? \Bd) � H; i = 1; 2: (4.4)Thus (1= sin(�))(L? \ Bd) � H and by Lemma 4.1 we get c1(�; 1= sin(�) � �) �C(�) + �(Bd \ L?) � D1�. Now the assertion follows from Lemma 4.2. �Lemma 4.4. Let sin(�) � 1=�. ThenV (D2�) � c1(�; 1= sin(�)� �)�d�1�d�1:Proof. From (4.4) and Lemma 4.1 followsc1(�; 1= sin(�)� �) � convf0; yig+ �((yi)? \Bd) � D�: (4.5)Now, let ai 2 L be the outward normal vector of convf0; yig with respect toconvf0; y1; y2g, i = 1; 2. Then fx 2 Ed : hai; xi � 0g \ D� � D2� and by (4.5)we get the assertion. �Lemma 4.5. Let sin(�) � 1=�, � < �=3 and hy1; y2i > 0. ThenV (D3�) � 1� �=�2 �d�d:Proof. Let F � L be the set of all outward unit normal vectors of supporting linesat 0 with respect to convf0; y1; y2g. By the de�nition of y1; y2 we have hyi; yki �cos(�) for 1 � k � n� 1, i = 1; 2, and thus hyi; ai � 0, 1 � i � n� 1, for all a 2 F .Now �v 2 D� for v 2 L? \Bd (cf. (4.4)) and hence we get (F + L?) \ �Bd � D3�.Since V (F ) = (1� �=�)=2 we obtain the required estimate. �Lemma 4.6. Let tan(�) � 1=�, � < �=3 and hy1; y2i < 0. ThenV (D4�) � cos(�)� � sin(�)cos(�=2) � �d�1�d�1:Proof. Let w = (y1 � y2)=jy1 � y2j. In particular we have � < �=3 and thushyj ; y1i � cos(�), hyj ; y2i � � cos(�), 1 � j � n� 1. It follows jhyj ; wij � cos(�)which implies hyj ; vi � sin(�) for all v 2 w? \ Bd. Thus for v 2 w? \ Bd and for� 2 [0; 1] we obtainh�2y1 + (1� �)2y2+�v; yji �� �(2 cos(�) + 2)� 2 cos(�) + � sin(�); hyj ; y1i � cos(�);��(2 cos(�) + 2) + 2 + � sin(�); hyj ; y1i � � cos(�):



FINITE AND INFINITE PACKINGS 13Hence by the de�nition of H�2y1 + (1� �)2y2 + �(w? \Bd) � H; for � 2 [c2(�; �); 1 � c2(�; �)];with c2(�; �) = (1 + � sin(�))=(2 + 2 cos(�)). Observe, by assumption the giveninterval is nonempty and �2y1 + (1� �)2y2 2 C(�). Thus�2y1 + (1� �)2y2 + �(w? \Bd) � D�; � 2 [c2(�; �); 1 � c2(�; �)]:Let u 2 L be the outward unit normal vector of convf2y1; 2y2g with respect toC(�) and let v0 2 fx 2 Ed : x 2 (w?\Bd); hu; xi � 0g. We have (convf2y1; 2y2g+�v0) \D� � D4� and thus we obtainV (D4�) � (1� 2c2(�; �)) � j2y1 � 2y2j�d�1�d�12 : �Lemma 4.7. Let � > 0. Then for every � > 0 such that �+ � < �mV (D1�) � �2 � c1(�; �)2�d�2 � �d�21 + c3(�+ �; d)with c3(�; d) = Z 11=�(1� x2)(d�5)=2dx=Z 1=�1=�m(1� x2)(d�5)=2dx; � 2 [1; �m):Proof. We have V (D1�) � �d�2d� 2 ZC(�) Zfz2L?\Sd�1:w+�z2Hg dvdw: (4.6)In the sequel we show that for a certain set G � C(�) with V (G) > 0 the aboveinner integral is of order �d�2. For this purpose we �rst consider the inner integralat w = 0 and setM� = fz 2 L?\Sd�1 : �z =2 Hg, K� = fz 2 L?\Sd�1 : �z 2 Hg.Assume M� 6= ;. Then L? \ �Sd�1 intersects the a�ne hull of certain facets Fijof the DV-cell H, j = 1; : : : ; k. Let vij 2 L? be the outer unit normal vector ofa�fFijg \ L?. Since the distance of a (d � 2)-dimensional face of H from 0 is atleast �m ([R3]) we get a�fFijg \ (L? \ �Sd�1) � relintfFij \L?g and there existsan �ij 2 [1; �] such that �ijvij 2 relintfFij \ L?g. WithMij = fz 2 (L? \ Sd�1); hz; vij i > �ij=�gwe have M� = [kj=1Mij . Now for 1 � j � k de�neKij = fz 2 (L? \ Sd�1); �ij=�m � hz; vij i � �ij=�g;and let z 2 Kij . With 
z = �ij=hz; vij i � � we get 
zz 2 a�fFijg \ L? andj
zz � �ijvij j2 � �2m � �2ij . With the same reasoning as above we obtain 
zz 2



14 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSFij \ L?. This shows relintfKjlg \ relintfKjkg = ;, k 6= l, and [kj=1Kij � K�.Thus we may writeZK� dv = RK� dv + RM� dv1 + RM� dv= RK� dv � (d� 2)�d�21 + RMl dv= RKl dv ;for a suitable index l 2 fj1; : : : ; jkg. Let g(x) = (1�x2)(d�5)=2 and for 
 2 [1; �) setf1(
) = R 1
=� g(x)dx, f2(x) = R 
=�
=�m g(x)dx. Thus RMl dv= RKl dv = f1(�l)=f2(�l).The �rst derivative of f1(
)=f2(
) shows that this function is monotonely decreasingand thus ZK� � (d� 2)�d�21 + c3(�; d) : (4.7)Now, by Lemma 4.1 we know: z 2 L?\Sd�1 with (�+�)z 2 H ) c1(�; �)C(�)+�z 2H. Hence we obtain for every � > 0 with �+ � < �m from (4.6) and (4.7)V (D1�) � �2 � c1(�; �)2�d�2 � �d�21 + c3(�+ �; d) �Proof of Theorem 4.1. Having Lemmas 4.3 { 4.7 the proof is an easy consequence oflimd!1 �d�1=�d = 1. Let � < �m = 2=p3 and �0 = minfarctan(1=�); �=3g. Wedistinguish three cases depending on � and the sign of hy1; y2i. For simpli�cationwe use V (D2�) � (1� � sin(�))�d�1�d�1 (cf. Lemma 4.4).I). � < �0 and the assumptions of Lemma 4.5 hold. Then we have by Lemma 4.3,4.4 and 4.5V (D�) � V (D1�) + V (D2�) + V (D3�)� �d�1�d�1 + �d�d2 + ��d�2�12 (1� � sin(�0))21� sin2(�0) �d�2 � �2�d�1 � �2�d2� �� �d�1�d�1 + �d�d2 ; (4.8)for all su�ciently large d.II). � < �0 and the assumptions of Lemma 4.6 hold. Then we have by Lemma 4.3,4.4 and 4.6 and cos(�) � 1� �2=2V (D�) � V (D1�) + V (D2�) + V (D4�)� 2�d�1�d�1 + ��d�2�12 (1� � sin(�0))21� sin2(�0) �d�2 � 2�2�d�1 � �02 ��d�1�� 2�d�1�d�1; (4.9)for all su�ciently large d.III). � � �0. Choose an � such that the assumption of Lemma 4.7 holds. Then byLemma 4.7. V (D�) � V (D1�)� �02 � c1(�; �)2�d�2 � �d�21 + c3(�+ �; d) � 2�d�1�d�1;



FINITE AND INFINITE PACKINGS 15for all su�ciently large d. As the �rst case occurs at most twice everything isproved. �Remark. The constant 2=p3 in Theorem 4.1 is almost certainly not best possible.In fact a quick review of the proof shows that it can be replaced by any constantsuch that (4.7) holds. It should be possible to prove this inequality for any � < p2by methods used by Rogers [R3].Proof of Theorem 4.2For the proof of Theorem 4.2 we use the well know relation�d = �d=2�(d=2 + 1) : (4.10)Proof of Theorem 4.2. We use the same argumentation as in the proof of Theorem4.1. We only evaluate V (D1) (� = 1) more carefully. Let �0 = �=4.I). � � �0 and the assumptions of Lemma 4.5 hold. Then we have by (4.8)V (D1) � V (D11) + V (D21) + V (D31)� �d�1 + �d2 + ��d�12 1� sin(�0)1 + sin(�0) �d�2�d � �d�1�d � 12��= �d�1 + �d2 + ��d � f1(d)By (4.10) we get f1(d) � 0 for d � d1 = 879 and thusV (D1) � �d�1 + �d2 ; d � d1: (4.11)II). � � �0 and the assumptions of Lemma 4.6 hold. Then we have by (4.9)V (D1) � V (D11) + V (D21) + V (D41)� 2�d�1 + ��d�1�12 1� sin(�0)1 + sin(�0) �d�2�d�1 � (2 + �02 )�= 2�d�1�d�1 + ��d�1 � f2(d)By (4.10) we get f2(d) � 0 for d � d2 = 4889 and thusV (D1) � 2�d�1; d � d2: (4.12)Let �� = �=3 + 0:00053.III). �0 � � � ��. By Lemma 4.3 and 4.4 we obtainV (D1) � V (D11) + V (D21)� 2�d�1 + �d�1��2 1� sin(�)1 + sin(�) �d�2�d�1 � 2 cos(�)� 1 + sin(�)cos(�) �= 2�d�1 + �d�1 � f3(�; d):



16 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSThe �rst partial derivative of f3 with respect to � shows that f3 is monotonelydecreasing in � and thus f3(�; d) � f3(��; d). By (4.10) we get f3(��; d) � 0 ford � d3 = 13:387 and thus V (D1) � 2�d�1; d � d3: (4.13)IV). �� � � � �=2. By Lemma 4.4 and Lemma 4.7 we may write with �� =0:1545 < �m � 1V (D1) � V (D11) + V (D21)� 2�d�1 + �d�1��2 � c1(1; ��)2 � �d�2=�d�11 + c3(1 + ��; d) � 2 cos(�)� 1 + sin(�)cos(�) �= 2�d�1 + �d�1 � f4(�; d):The mean value theorem of integral calculus shows c3(�; d) � c3(�; d+1) and thusf4(�; d) < f4(�; d + 1). By numerical calculations which can be carried out in anydesired precision we obtain f4(��; d) � 0 for d � d4 = 13:387. In particular weobtain c1(1; ��)2 �(�d�2=�d�1)=(1+c3(1+��; d)) � 1 for all d � d4. But this impliesthat f4 is monotonely increasing in � for � 2 [��; �=2] and d � d4. Hence it followsV (D1) � 2�d�1; d � d4: (4.14)From (4.11)|(4.14) we obtain the assertion (cf. the Proof of Theorem 4.1.) �5. Sausages for centrally symmetric convex bodiesIn this section we prove an analogue of Theorem 4.1 for general centrally sym-metric convex bodies.Theorem 5.1. There is a positive function  (x; y) on [1;1)�N with the propertieslimy!1 (1; y) = 2p3 and  (x1; y) >  (x2; y) if x1 < x2;such that for K 2 Kd0 with inradius r and circumradius R and for � �  (R=r; d)minCn2Pn(K)fV (conv(Cn + �K))g = minu2Sd�1fV (conv(Sn(u;K) + �K))g:By a theorem of John ([J], [GL, pp. 13]) we can always achieve R(AK)=r(AK) �pd by a suitable linear transformation A. Thus we can deduce from Theorem 5.1(cf. Theorem 1.1 (4))Corollary 5.1. Let K 2 Kd0. There exists a constant �d > 0 only depending on dsuch that for � � �dminCn2Pn(K)fV (conv(Cn + �K))g = minu2Sd�1fV (conv(Sn(u;K) + �K))g:For the sausage radius we obtainCorollary 5.2. For each d there is a constant �d > 0 such that�s(K) � �d for all K 2 Kd0 :



FINITE AND INFINITE PACKINGS 17Proof of Theorem 5.1In the sequel let K 2 Kd0 be a centrally symmetric convex body with distancefunction f : Ed ! R, inradius r and circumradius R. As in the proof of Theorem4.1 let H be a �xed DV-cell of the arrangement Cn = fx1; : : : ; xng 2 Pn(K)with respect to xn = 0 and let �, yj , L be de�ned as in section 4. Now, letD� = H \ (conv(Cn + �K)) and C(�) = convf0; 2y1=f(y1); 2y2=f(y2)g \H. Withrespect to C(�) we de�ne Di�, 1 � i � 4, as in De�niton 4.2. Since the arrangementis admissible, we have jxij � 2=f(yi) and thus 2yi=f(yi) 2 conv(Cn). In particularfx 2 Ed : hx; yji � 1=f(yj); 1 � j � n� 1g � H: (5.1)Observe that 1=R � f(v) � 1=r for v 2 Sd�1. Further we de�neDe�nition 5.1. Let u 2 Sd�1. For y 2 Ku let�(y; u) = minfj�j : � 2 R and y + �u 2 Kg; s(u) = maxf�(y; u) : y 2 Kug;�K = maxf1=(s(u)f(u)) : u 2 Sd�1g;s(y; u) = � ��(y; u); if y � �(y; u)u 2 K�(y; u); if y + �(y; u)u 2 K:Obviously �(y; u) � pR2 � jyj2 and for jyj � r the point y belongs to K andthus �(y; u) = 0. Hencejs(u)j �pR2 � r2 and �K � r=pR2 � r2: (5.2)From the de�nition we have s(y; u) = �s(�y; u). In the case K = Bd we obtains(u) = 0 and we may set �K =1. For the proof we need the following two LemmasLemma 5.1. Let K 2 Kd0 with distance function f , inradius r and circumradiusR. Then for v; w 2 Sd�1jhv; wij � cos(�)) f(v) � (1 + � � g(R=r)) � f(w);where g : [1;1)! R is a monotonely increasing function with g(1) = 0.Proof. Assume hv; wi � cos(�) and let f(w) � f(v). Further let a 2 Ed be aunit outward normal vector of a supporting hyperplane S of K with v=f(v) 2K \ S. Assume ha; v=f(v)i = 
 = cos(�)=f(v). On account of hv; wi � cos(�) andha;w=f(w)i � ha; v=f(v)i we obtain 
f(w) � ha;wi � cos(�) cos(�) � sin(�)(1 �cos2(�))1=2 or 1 � (f(v)=f(w))�cos(�)� sin(�)p(1= cos(�))2 � 1� :Now, cos(�) � r=R, f(v)=f(w) � R=r and thusf(v)f(w) � � (cos(�) � sin(�)p(R=r)2 � 1)�1; � � arccos((r=R)2)� arccos(r=R)R=r; else:From this it is not hard to deduce an appropriate function g. �



18 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSFor abbreviation we set R = R=r and �(�;R) = 1 + �g(R). Moreover we de�nethe functionsc2(�;R) = max(2�(�;R)� 1 + (�mR) sin(�)�(�;R)2�(�;R) + 2 cos(�) ; �(�;R)2p2 + 2 cos(�)) ;c2(�;R) = min(2 cos(�) + 1=�(�;R)� (�mR) sin(�)2�(�;R) + 2 cos(�) ; 1� �(�;R)2p2 + 2 cos(�)) ;
(�; �;R) = (1� (�R) sin(�))=�(�;R):Lemma 5.2. Let sin(�) � 1=(�mR). Then for � � �m and i = 1; 2
(�; �;R) � convf0; yi=f(yi)g+ �R �(yi)? \Bd� � H: (5.3)Proof. Apparently, this statement is closely related to Lemma 4.4, but in contrastto Lemma 4.4 we can not make use of Lemma 4.1 because in general yj=f(yj) =2rSd�1. Now, let vyi 2 ((yi)? \ Bd), i = 1; 2. By the de�nition of � we havehyj ; vyii � sin(�) (cf. Lemma 4.3) and on account of the de�nition of �(�;R) weobtain h�yi=f(yi) + �Rvyi ; yji � 1=f(yj), i = 1; 2, if � � 
(�; �;R) and hence by(5.1) we get (5.3). �Now, we transfer the results of the Lemmas 4.3 { 4.7 to the centrally symmetricconvex body K.Lemma 5.3. Let sin(�) � 1=(�mR). Then for � � �mV (D1�) � rd � �2 � c1(�; 1= sin(�)� �)2�d�2 � �d�2:Proof. Immediate consequence of rBd � D� and Lemma 4.3. �The next two Lemmas correspond to Lemma 4.4 and Lemma 4.5. Since ingeneral the set fx 2 D2� : hyi; xi = 
g for 
 2 [0; 
(�; �;R)=f(yi)] does not containa set of volume �d�1V (Kyi )=2 as in the case K = Bd we have to evaluate thesesections more carefully. To this end we distinguish two cases depending on the signof hy1; y2i. In the following let zi 2 L, i = 1; 2, be the outward unit normal vectorsof convf0; 2yi=f(yi)g with respect to C(�). Further let u 2 Sd�1 with2(n� 1)V (Ku)f(u) �d�1 + �dV (K) = minfV (conv(Sn(u;K) + �K)) : u 2 Sd�1g;and let �(K) = V (Ku)=f(u).Lemma 5.4. Let hy1; y2i � � cos(�) and let � satisfy: sin(�) � 1=(�mR), and�(�;R) � 2 cos(�). Then for � � minf�m; �KgV (D2�) � 
(�; �;R)��d�1�(K)� 2 sin(�)cos(�)pR2 � r2�d�1Rd�1�d�2� :



FINITE AND INFINITE PACKINGS 19Proof. For i = 1; 2 let M i
(�) = fx 2 conv(Cn + �K) : hyi; xi = 
; hzi; xi �0; jx� 
yij � �Rg with 
 2 [0; 
(�; �;R)=f(yi)]. In the following we showV (M i
(�)) � �d�1V (Kyi)2 � �s(yi) sin(�)cos(�) (�R)d�2�d�2: (5.4)By (5.3) we haveM i
(�) � D2� and on account of the de�nition of s(yi) (5.4) impliesthe assertion. For the proof of (5.4) we will only consider the case i = 1; the othercase can be treated similarly. Before we start we introduce some notation:T = fx 2 �Ky1 : hz1; xi � 0g;T�0 = fx 2 T : s(x=�; y1) � 0g; T>0 = fx 2 T : s(x=�; y1) > 0g;M
 = fx 2 conv(Cn + �K) : hy1; xi = 
g; M0
 =M1
 (�)� 
y1;�(x; �; 
) = � � s(x=�; y1) 2 sin(�)
f(y2) + 2 cos(�) ; �(�) = � � s(y1) sin(�)cos(�) :Obviously we have V (T ) = �d�1V (Ky1)=2 and �(�) � �(x; �; 
). First we claimT�0 + 
y1 �M1
 (�): (5.5)To prove this, it su�ces to show T�0 + 
y1 � conv(Cn + �K). Let x 2 T�0and let � = (� � s(x=�; y1) + hx1; y1i � 
)=hx1; y1i. Since � � s(x=�; y1) � 
 � 0we have � � 1. Further � � �K yields � � s(x=�; y1) � �1=f(y1) and on accountof 
 � 1=f(y1), hx1; y1i = jx1j � 2=f(y1) it follows � � 0. Now, x + 
y1 =�(x+�s(x=�; y1)y1)+(1��)(x+�s(x=�; y1)y1+x1) 2 conv(Cn+�K). This shows(5.5). Next we claimx 2 T>0 ) x� �(x; �; 
)z1 + 
y1 2M
 : (5.6)Let x 2 T>0 and let � = (� � s(x=�; y1)f(y2))=(
f(y2) + 2 cos(�)). It is clear that� � 0. By the de�nition of �K and by the choice of � we obtain ��s(x=�; y1)f(y2) �f(y2)=f(y1) � �(�;R) � 2 cos(�), where the second inequality follows from Lemma5.1. Hence � � 1 and on account of y2 = � cos(�)y1 � sin(�)z1 we get x ��(x; �; 
)z1+
y1 = �(2y2=f(y2)+x+�s(x=�; y1)y1)+(1��)(
y1+x+�s(x=�; y1)y1)2 conv(Cn + �K), which implies (5.6).Now, let U be the orthogonal projection of T onto the hyperplane fx 2 Ed :hz1; xi = 0g. For x 2 U let �x = maxf� 2 R : x + �z1 2 M0
g , �x = minf� 2 R :x+�z1 2M0
g and let �x, �x be de�ned in the same way with respect to T insteadofM0
 . Since V (M1
 (�)) � RU �x��xdx and �d�1V (Ky1)=2 = V (T ) = RU �x��xdxit su�ces to show for (5.4) that for x 2 U�x � �x � �x � �x � �(�): (5.7)Observe, if hz1; xi � �(x; �; 
) � 0 holds for x 2 T>0 then we also have x ��(x; �; 
)z1 + 
y1 2 M1
 (�). Thus (5.7) follows immediately from (5.5), (5.6) andthe convexity of M1
 (�). �



20 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSLemma 5.5. Let sin(�) � 1=(�mR), � < �=3 and hy1; y2i > 0. Then for � �minf�m; �KgV (D2�) + V (D3�) � �d V (K)2 + 
(�; �;R)�d�1�(K)� �� (�R)d�d:Proof. Again we introduce some setsUr = fx 2 �K : hy2; xi > 0 ^ hy1; xi � 0g;U l = fx 2 �K : hy2; xi � 0 ^ hy1; xi � 0g;T ri = fx 2 convf�K; xi + �Kg : 0 � hyi; xi � 
(�; �;R) ^ hzi; xi � 0g; i = 1; 2;T li = fx 2 convf�K; xi + �Kg : hyi; xi � 0 ^ hzi; xi � 0 ^ x =2 �Kg; i = 1; 2:Obviously, U l � D3� and on account of (5.3) we get T ri � D2�. First we show that T libelongs to D2� [D3�. Let x 2 T li . Then x 2 convf�RBd; xi+�RBdg and hyi; xi � 0yields jxj � �R. Since � < �=3 we have hyi; yji � cos(�) for 1 � j � n � 1and so hyj ; xi � sin(�)jxj � sin(�)�R � r. Here the last inequality follows bythe choice of �. Now r � 1=f(yj) and from (5.1) we obtain x 2 H which impliesx 2 D2�[D3�. On account of V (U l[Ur) = �dV (K)=2 and dim(U l\(T ri [T li )) � d�1,dim(T l1 \ T l2) � d� 1, dim(T r1 \ T r2 ) � d� 1 we may writeV (D2� [D3�) � V (U l [ (T r1 [ T l1) [ (T r2 [ T l2))� V (U l) + V (T r1 [ T l1) + V (T r2 [ T l2)� V (T l1 \ T r2 )� V (T r1 \ T l2)� �dV (K)2 + 2Xi=1 V (T ri + T li )� V (Ur)� V (T l1 \ T r2 )� V (T r1 \ T l2):(5.8)For i = 1; 2 we claimV (T ri [ T li ) � 
(�; �;R) � �d�1V (Kyi)2f(yi) : (5.9)To prove this, it su�ces to show that we have forM i
 = fx 2 T ri : hyi; xi = 
g[fx 2T li : hyi; xi = �
g and 0 � 
 � 
(�; �;R)=f(yi)V (M i
) � �d�1V (Kyi)2 : (5.10)To this end let x 2 �Kyi with hzi; xi � 0.a) � � s(x=�; yi) � 
.Let � = (hxi; yii+� �s(x=�; yi)�
)=hxi; yii. As in the proof of (5.5) we may deduce� 2 [0; 1] and obtain x+
yi = �(x+��s(x=�; yi)yi)+(1��)(x+��s(x=�; yi)yi+xi) 2convf�K; xi + �Kg. Hence x+ 
yi 2 T ri and x+ 
yi 2M i
 .b) � � s(x=�; yi) > 
.Assume x + 
yi 2 �K. Then we have s(x=�; yi) � 
=� which contradicts theassumption. Hence �x � 
yi =2 �K and further hzi;�x � 
yii � 0. Now let� = (hxi; yii+
���s(x=�; yi))=hxi; yii. Again � 2 [0; 1]. Since�x���s(x=�; yi)yi =



FINITE AND INFINITE PACKINGS 21�x+ � � s(�x=�; yi)yi 2 �K we obtain �x� 
yi = �(�x� � � s(x=�; yi)yi) + (1 ��)(�x� � � s(x=�; yi)yi + xi) 2 convf�K; xi + �Kg. Thus we have �x� 
y1 2 T liand �x� 
yi 2M i
 .Altogether we get (5.10) and thus (5.9). Now by de�nition we have Ur \ (T l1 \T r2 ) = ; and Ur [ (T l1 \ T r2 ) � fx 2 Ed : jxj � �R ^ hy2; xi � 0 ^ hy1; xi � 0g.Further (T r1 \ T l2) � fx 2 Ed : jxj � �R ^ hy2; xi � 0 ^ hy1; xi � 0g. By (5.9) and(5.8) we get the assertion. �Lemma 5.6. Let hy1; y2i < 0 and let � satisfy: � < �=3 and c2(�;R) � c2(�;R).Then for � � minf�m; �KgV (D4�) � (c2(�;R)� c2(�;R)) � p2 + 2 cos(�)�(�;R) � �d�1 � �(K):Proof. Let u(�;R) (u(�;R)) be the �rst expression in the de�nition of c2(�;R)(c2(�;R)) and let w = (y1=f(y1) � y2=f(y2))=jy1=f(y1) � y2=f(y2)j. On accountof the de�nition of �(�;R) and (5.1) we obtain with the method used in the proofof Lemma 4.6� 2y1f(y1) + (1� �) 2y2f(y2) +R�(w? \Bd) � H; � 2 [u(�;R); u(�;R)]: (5.11)By assumption the above interval is well de�ned. Without loss of generality weassume f(y2) � f(y1) and thus jy1=f(y1) � y2=f(y2)j � jy1 � y2j=f(y1). Onaccount of jhy1; wij � cos(�) we obtain with respect to Lemma 5.1f(w) � ���� y1f(y1) � y2f(y2 ���� � jy1 � y2jf(y1) � f(y1)�(�;R) � p2 + 2 cos(�)�(�;R) : (5.12)Let z3 be the outward normal vector of convf2y1=f(y1); 2y2=f(y2)g with respect toC(�) and for 
 2 [c2(�;R); c2(�;R)] letM
 = fx 2 convf2y2=f(y2)+�K; 2y1=f(y1)+�Kg : x = 
2y1=f(y1)+(1�
)2y2=f(y2)+y with hw; yi = 0^hz3; yi � 0g. From(5.11) we get M
 � D4� and we claimV (M
) � �d�1V (Kw)2 : (5.13)Let T = fy 2 �Kw : hz3; yi � 0g. For y 2 T let � = 
 � (� � s(y=�;w))(2jy1=f(y1)� y2=f(y2)j): On account of (5.12), the choice of 
 and the de�nition of �K wehave � 2 [0; 1]. Hence 
2y1=f(y1) + (1 � 
)2y2=f(y2) + y = �(2y1=f(y1) + y + � �s(y=�;w)w) + (1 � �)(2y2=f(y2) + y + � � s(y=�;w)w) 2 M
 . Thus 
2y1=f(y1) +(1� 
)2y2=f(y2) + T �M
 and we obtain (5.13). HenceV (D4�) � (c2(�;R)� c2(�;R)) � ���� 2y1f(y1) � 2y2f(y2) ���� �d�1V (Kw)2� (c2(�;R)� c2(�;R)) � jy1 � y2j�(�;R) � �d�1 V (Kw)f(w) �



22 ULRICH BETKE, MARTIN HENK AND J�ORG M. WILLSLemma 5.7. Let � > 0 and c3(�; d) be de�ned as in Lemma 4.7. Then for every� < �m and � > 0 such that �+ � < �mV (D1�) � rd�2 � c1(�; �)2�d�2 � �d�2=(1 + c3(�+ �; d)):Proof. Immediate consequence of rBd � D� and Lemma 4.7. �Proof of Theorem 5.1. Let K be a centrally symmetric convex body with circum-radius R and inradius r. Further let � 2 (0; �=2] satisfy c2(�;R) � c2(�;R),sin(�) � 1=(�mR) and �(�;R) � 2 cos(�). Set �0 = minf�; �=3g. Observe that �0depends only on the ratio R=r.As in the proof of Theorem 4.1 we distinguish three cases depending on � andthe sign of hy1; y2i. Since the proof is completely analogous to the proof of Theorem4.1 we only give the essential steps.I). � < �0 and the assumptions of Lemma 5.5 hold. By Lemma 5.3 and Lemma 5.5we get for � � minf�m; �KgV (D�) � V (D1�) + V (D2�) + V (D3�) � V (K)2 �d + �(K)�d�1 + ��d�2rd � f1(�;R; d);where f1 is a function with the following properties: f1 is continuous in � and R,monotonely decreasing in R and f1(0; R; d) > 0. Thus there exists a  1(R; d) > 0such that V (D�) � V (K)2 �d + �(K)�d�1; � 2 [0;  1(R; d)]:II). � < �0 and the assumptions of Lemma 5.6 hold. By Lemma 5.3, 5.4 and 5.6we get for � � f�m; �KgV (D�) � V (D1�) + V (D2�) + V (D4�) � 2�(K)�d�1 + ��d�2rd � f2(�;R; d);for a certain function f2 with the same properties as f1. Thus there exists a 2(R; d) > 0 such thatV (D�) � 2�(K)�d�1; � 2 [0;  2(R; d)]:III). � � �0. For 0 � � < �m let 
(�) = maxfc1(�; �)2=(1 + c3(� + �; d)) : � >0; �+ � < �mg. Then by Lemma 5.7V (D�) � V (D1�) � rd�2 �d�2�d�2
(�) � 2�(K)�d�1 + rd�d�2 � f3(�;R; d);for a certain function f3 with the same properties as f1. Thus there exists a 3(R; d) > 0 such thatV (D�) � 2�(K)�d�1; � 2 [0;  3(R; d)]:Now, let  (R; d) = minf 1(R; d);  2(R; d);  3(R; d)g. As the �rst case occurs atmost twice the assertion of Theorem 5.1 is proved for � �  (R; d). Since thefunctions  i(R; d) are monotonely decreasing in R we also have this property for (R; d).Assume R = 1. Thus K is a ball with radius 1, say. We obtain �K = 1,g(R) = 0, �(�;R) = 1, (�R) = � and c2(�;R) = c2(�; �m), c2(�;R) = 1� c2(�; �m)(cf. Lemma 4.6). Thus Lemmas 5.3 { 5.7 become the appropriate Lemmas of section4, where Lemma 5.5 is a combination of Lemma 4.4 and 4.5. Since �xing � = �m inLemma 4.6 has no in
uence on the proof of Theorem 4.1 we can choose the functionsfi(�;R; d), 1 � i � 3, in such a way that limd!1  (1; d) = �m. �
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