FINITE AND INFINITE PACKINGS

ULRICH BETKE, MARTIN HENK AND JORG M. WILLS

ABSTRACT. Let K C E®, d > 2, be a centrally symmetric convex body with volume
V(K) > 0 and distance function f. For n € N let P,(K) = {C,, C E?: C,, =
{zb,..., 2"}, f(z' —2d) > 2,0 # j}, i.e. Cn + K, Opn € Pp(K), is a packing of n
translates of K. For p > 0 let

0(K,n,p) =max{n V(K)/V(conv(Cp + pK)) : Cr, € Pn(K)}

be the density of a densest packing of n translates of K, where p controls the influence
of the boundary. We show that for p > 2

limsup §(K, n, p) = §(K),

n—oo

where §(K) is the classical densest infinite packing density of K. So we get a new
approach to classical packings. For d = 2 we generalize classical results by Rogers,
Oler and Groemer. We further show that there exists a pg > 0 only depending on
the dimension such that for p < pg 6(K,n,p) is attained if conv(Cy) is a segment,
i.e. if conv(Cr + pK) is a "sausage”. In particular we prove L. Fejes Tth’s sausage
conjecture for d > 13.387

0. Introduction

Throughout this paper E? denotes the d-dimensional Euclidean space and the
set of all centrally symmetric convex bodies K C E¢ — compact convex sets with
K = —K — with non-empty interior (int(K) # @) is denoted by KZ. B? denotes
the d-dimensional unit ball with boundary S$%=! and conv(P) denotes the convex
hull of a set P C EY. Further, the volume of P with respect to the affine hull of P
is denoted by V(P) and for K € K¢ let 6(K) be the density of a densest packing
of translates of K (cf. [GL], [CS], [FK]).

In this paper we consider finite and infinite packings of translates for K € Kg. To
this end we introduce for n € N the set P, (K) of all possible packing arrangements
of n translates of K, which can be defined by

PH(K) = {Cn C E Cn = {xl’.“’mn}’ fK(xi_mj) >2,1 7&]}’

where fx : E4 — R denotes the distance function of K, Le. fx(z) = min{A > 0:
z € AK}. So for C,, = {z',...,2"} € P,(K) we have int(z’ + K)Nint(z7 + K) = 0),
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i # 7. It turns out that the case dim(conv(C,)) = 1 plays an essential role; so we
introduce a special notation: For u € 971 and K € K¢ we call S, (u,K) =
{z',...,2"} € P,(K) a sausage arrangement in direction u iff 2° = 2i-u/fx (u) for
1 <i < n. In the special case K = B? we have that V (conv (S, (u, BY) + pB?)) is
apparently independent of u and thus we write S,, = S, (u, BY) for some arbitrary
u € S41. In this paper we consider the following functionals

Definition 0.1. For K € K, n € N and p € RZ? let

_ n-V(K)
O(K,n, p) = max { V (conv(C,, + pK))
d(K,p) =limsupd(K,n,p).

n—oo

:Cy, € Pn(K)},

d(K,n,p) and 6(K, p) can be interpreted as packing densities with a parameter
p which controls the influence of the boundary.

In section 1 we show some simple but basic results; in particular the close relation
between finite packing densities and classical packing densities. In section 2 we give
for d = 2 a description of 6(K,n, p) and §(K, p) by other functionals (Theorem 2.2).
The proof is based on a lower bound of V(conv(C,, + pK)) (Theorem 2.1), which
generalizes classical results by ROGERS, OLER and GROEMER. From Definition 0.1
we get

I(K) <do(K,p) <lforl<p< oc. (0.1)

For p < 1 we may have §(K,p) > 1. In section 3 we prove that §(K,p) = §(K)
for p > 2 (Corollary 3.1). This statement is an easy consequence of a more general
result for arbitrary convex bodies (Theorem 3.1). Thus we obtain a new approach
to classical infinite packings by translates.

For d = 2 ROGERS [R1] proved §(K,1) = 6(K) = 0.(K), where d-(K) is the
density of a densest lattice packing of K. For d > 3 no such result can be expected
for arbitrary K. For this let Z € K¢ be the cartesian product of B4~! and a segment
of length 1, say in direction e? € S%~1, then

V(conv(S, (e, Z) + Z)) < V(conv(C, + Z)), C, € P,(Z),

and in contrast to ROGERS’ result we obtain 6(Z,n,1) = §(Z,1) > §(Z). Thus
the behaviour of §(K, p) for p = 1 is completely different from the case p > 2. A
nice example for such linear arrangements in usual 3-space is the densest packing
of equal coins.

A conjecture in the same spirit is L. FEJES TTH’s [F| famous ”sausage conjec-
ture”: Ford > 5, p=1andn €N

min{V (conv(C, + pB?) : C,, € P,,(B)} = V(conv(S, + pB?)). (0.2)

Several partial results support this conjecture (e.g. [BGW], [BG], [FGW], [B61],
[B62], [B63], [B6H]), but until now it was not proved for any dimension. In section
4 we show that (0.2) even holds for all p < 2/+/3 and sufficiently large d (Theorem
4.1). In particular we show that the sausage conjecture (p = 1) is true for d > 13.387
(Theorem 4.2).

Finally, in section 5 we show that for small p a sausage arrangement is not only
best possible for B? with respect to §(K,n, p), but for every K € K¢ there exists
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a function ¢¥(R(K)/r(K),d) > 0, only depending on the ratio of circumradius and
inradius and the dimension, such that for p < ¢(R(K)/r(K),d) the maximum of
d(K,n,p) is attained for a certain sausage S,(u, K) (Theorem 5.1). This result
implies that there exists a constant pg > 0 only depending on the dimension with
the same property (cf. Corollary 5.1).

Remarks.

(1) All results can be generalized to arbitrary (non-symmetric) convex bodies,
but only for large p this can be done shortly and elegantly (cf. Theorem 3.1
and Corollary 3.1).

(2) Similar results hold for the restriction to finite and infinite lattice packings,
which will be considered in a later paper, and similar ideas also work for
finite and infinite coverings, but the methods seem to be different.

1. Basic Properties

From Definition 0.1 follows that the calculation of §( K, n, p) and §(K, p) requires
information on V (conv(C,, + pK)), which can be written as polynomial in p with
the mixed volumes V;(conv(C,), K) (cf. [BF] or [GL]) as coefficients:

d
V(conv(Cy + pK)) = 3 <Zl> Vi (comv(Ch), K) (1.1)
i=0
In particular Vy(conv(Cy,), K) = V(conv(C,)), Va(conv(Cy), K) = V(K) and V;(
conv(Cy), K) = 0 if dim(conv(C),)) < d —i. Formula (1.1) is an essential tool in
this paper.

For a sausage S,(u,K) = {z!,...,2"} we have dim(conv(S,(u,K))) = 1 and
thus V;(conv(S, (u, K)),K) = 0,4 =0,1,...,d — 2. Moreover, since fx(z' —z'*!) =
2,1 <i<n—1, weget Vg_i(conv(S,(u,K)),K) = 2(n — 1)(fx(u)) 'V (K,),
where K, denotes the orthogonal projection of K onto a hyperplane with normal
vector u (cf. [BF, p. 45]). Hence

V(conv (S, (u, K) + pK)) = 2(n — 1)%&‘1 + V(K)p?. (1.2)
For K = B? we get from (1.2) with V(B?) = kg4
V(conv(S, + pB%) = 2(n — 1)kq_1p7 " + kap?. (1.3)

From (1.2) we obtain that

n-V(K) u d—1
ma"{%n SOV (R [k V) 40 }

is the density of a densest sausage arrangement of n translates of K. Since we are

interested in infinte packings as limit of finite packings we define

Definition 1.1. For K € K¢ let

os(K) = max{M Tu € Sd‘l}.

2V (K.)

ds(K) is the density of a densest ”infinite sausage arrangement” of K with
respect to p = 1. Observe, for arbitrary p the appropriate density is given by
§s(K)/p?=t. With (1.1) and (1.2) we obtain some simple but basic results.
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Theorem 1.1.
(1) Letn € N and u € S such that for p = p;

MK, n,p) =n-V(K)/V(conv(S,(u, K) + pK)). (1.4)

Then (1.4) holds for each p € [0, p1].
(2) Let u € S4=1 such that for p = p;

(K, p) = ds(K)/p"". (1.5)

Then (1.5) holds for each p € [0, p1].
(3) Let py € RO such that for p = ps

5(K, p) = 8(K). (16)
Then (1.6) holds for each p € [pa2, ).
(4) Let p € R2°, n € N and C,, € P,(K) such that §(K,n,p) =n-V(K)/V(

conv(C,, + pK)). For every nonsingular affine transformation T : B¢ — E¢
we have

S(T(K),n,p) = n- V(T(K))/V (conv(T(Cy) + pT(K))).

Proof. From (1.1), (1.2) and (1.4) follows

d—1
20~ )yt < 3 () svitconv(C). ).
=0

Since the mixed volumes are nonnegative the inequality holds for each p € [0, p1]
and thus we obtain (1). (2) follows from (1) with n — oo and (3) is a consequence
of the observation (see (0.1)), that for each K and C,, V(conv(C,, + pK)) increases
with p. (4) is an immediate consequence of T(C),) € P,(T(K)). O

Theorem 1.1 motivates the following

Definition 1.2. For K € K¢ let
ps(K) =sup {p: §(K,p) = ds(K)/p" "}

be the sausage radius of K and

pe(K) =inf{p: (K, p) = 6(K)}
be the critical radius of K.

Remark. Clearly ps(K) < p.(K), if ps(K) and p.(K) exist at all.
In Theorem 3.1 we show p.(K) < 2 for K € K¢ and in Theorem 5.1: p,(K) > 0;
so for K € K¢
0 < pa(K) < pol(K) <2

From Definition 1.1, 1.2 and (1.2) one gets the following simple result, which shows
the close relations between p;, p., ds and §
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Theorem 1.2.
3s(K) (po(K))' ™ < 8(K) < 05(K) (ps(K))' 7.

For K = B? follows with 65(B%) = kq/(2kq_1)
Corollary 1.1.

Kd d Kd (ps(Bd))l—d.

< 8B <

(pe(B)" = B

2Kq-1

Remark. Corollary 1.1 implies that any upper bound of p.(B¢%) and any lower bound
of ps(B?) gives a lower and an upper bound for §(B?). In particular Corollary 3.2,

Corollary 4.2 and the inequality /27/(d + 1) < (ka/kd-1) < /27/d (cf. [BGW])
imply that for every e > 0 exists a d(e) such that for d > d(e)

—d
27 2 2

274 < §5(B? —(=- .
itz B <5 <\/§ 6)

Though this is much weaker than the best known bounds for §(B¢) it shows that
finite packings are not only of interest in their own but also give a new approach
to the study of infinite packings.

Theorem 2.2 iii) implies that ps(K) = p.(K) holds for each K € K2. For the unit
cube C? we obviously get: p,(C%) = p.(C?) = 1. But in general we can not expect
ps(K) = pe(K) as the next simple result shows (cf. [Gr, pp. 43]):

Theorem 1.3. For each d > 4 there is a K € K& with

ps(K) <1 < p(K).

Proof. Let K € K3 be the cartesian product of the regular hexagon H and B2
embedded in the orthogonal complement of H. Clearly H generates a tiling of the
plane. So for sufficiently large n € N V(conv(C), + K)) is minimal if dim(conv(C,,))
= 2. As this minimal C,, is neither 1-dimensional nor d-dimensional, we have
po(K) <1< po(K). O

But for the unit ball B¢ we conjecture

Strong Sausage Conjecture. For d > 1
ps(B?) = p.(BY).
This conjecture would imply the equivalence of the two problems of the determina-
tion of §(B%) and of p.(B?).
2. The 2-dimensional case

For K € K2 let K be a minimal circumscribed parallelogram of K. Obviously we
have V(K) = V(K)/ds(K). Further for two convex bodies C, D C E? let A(C, D)
be the mixed area. Then (1.1) becomes

V(conv(C, + pK)) = V(conv(C,)) + 2pA(conv(C,,), K) + p*V (K). (2.1)

For abbreviation we set A(K) = V(K)/§(K). With this notation we have
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Theorem 2.1. Let K € K%, n € N and C,, € P,,(K). For each p >0
V(conv(Cy +pK)) > (n—1)A(K) +2(p— 7(K)) A(conv (Cn ), K) + p*V (K), (2.2)

with y(K) = 6s(K)/6(K). Further 3/4 < v(K) < 1 with y(K) = 1, if K is a
parallelogram and y(K) = 3/4, if K is an affinely reqular hezagon.

Remark. With slightly different notation special cases of (2.2) were already proved
before. The first one was ROGERS [R1]. He proved (2.2) for p = 1 and without the
summand with A(C,,, K). Rogers later [R2] gave a weaker inequality for arbitrary
convex bodies K C E2. GROEMER [G] proved (2.2) for the special case K = B2
and p = v(B?) = v/3/2. OLER [O] proved (2.2) for p = 0; from his result we deduce
the general case. FOLKMAN & GRAHAM [FG] and GRAHAM, WITSENHAUSEN and
Z ASSENHAUS [GWZ] gave easier proofs and generalizations to Minkowski planes of
OLER’s theorem. None of these authors made a remark on general p.

Before we start with the proof we deduce from Theorem 2.1 the following results
on §(K,n,p) and (K, p)

Theorem 2.2. For K € K2 and n € N

i) (6(K,n,p)~" = (1= 1/n)p(ds(K))~" + (1/n)p?, 0<p <~(K),
i) (6(K,n,p))~" > (1=1/n)(0(K))~! + (1/n)p?, ~(K) < p < o,
[ ds(K)/p, 0<p<y(K),
L I S s

Corollary 2.1. For K € K2 holds

pe(K) = ps(K) = v(K).

Remark. For p = y(K) various minimal configurations are possible; in particular
also linear arrangements (’sausages’). For K = B? and (B?) = /3/2 this was
already observed by GROEMER (cf. also WEGNER [W]).

Proof. On account of (0.1) iii) is an immediate consequence of i) and ii). Further, ii)
is an immediate consequence of (2.2) since p > y(K). To prove i) we first consider
p=7(K). Let u € S%! such that 2V (K,)/fx(u) = V(K)/és(K). Then by (1.2)

V(S (u, K) +(K)K) = (n = 1)y(K)V(K)/ds(K) + (v(K))*V (K).

This shows that for S, (u, K) we have equality in (2.2). As for p = y(K) the right
hand side in (2.2) is independent of C,, i) follows. Now for p < «(K) i) follows by
Theorem 1.1 (1). O

The proof of Theorem 2.1 is prepared by the following simple result.
Lemma 2.1. K meets K in the four midpoints of its edges.

Proof. Let K be minimal and let a,b,a’, b’ be the four edges of K with a parallel
to a’ and b parallel to b'. Assume that the midpoint of b and hence of b’ does not
meet K. Then let a” and a”’ be segments parallel to a and o' through the centre
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of K, with a” having its endpoints on b and b’ and a'” having its endpoints on the
boundary of K. If | denotes the length, then I(a") > I(a"").

Now let ¢ and ¢’ be the two parallel segments tangent to K at the endpoints of
with their endpoints lying on aff{a} and aff{a’}. They generate with aff{a}

"
a

and aff{a'} a parallelogram set K . It follows
V(K') = 1(a") - dist(a,d’) < I(a") - dist(a,d’) = V (K).
which contradicts the minimality of K. O

Proof of Theorem 2.1. First we consider v(K). Obviously 6(K) > ds(K) and
thus y(K) < 1. Now, let H be a convex hexagon of minimal area circumscribed
about K and let H be a smallest circumscribed parallelogram of H, i.e. V(H) =
V(H)/ds(H). Then A(H) = A(K) (cf. [EGH, p. 44] and v(H) < y(K).

By Lemma 2.1 it follows that the edges of H meet H at their midpoints. If one
(and hence two) of these midpoints is a vertex of H, we can choose the corresponding
edges of H such that they contain a corresponding pair of edges of H. So without
restriction we can assume that each of the four edges of H has a common affine
hull with one of the edges of H. So H and H have two common vertices, whereas
the four remaining vertices of H lie on the four edges of H.

Obviously d5(H)/§(H) is minimal if these four vertices are the midpoints of these
edges. In this case H is an affine image of the regular hexagon and an elementary
calculation shows dg(H)/6(H) = 3/4. Thus we obtain the required properties of
V(K).

From OLER’s Theorem 1 (cf. [O], p. 20) follows with a suitable change of notation
V(conv(Cp))/A(K) + (1/2) Mg (conv(Cp)) +1 > n or

V{conv(C,)) > (n~ DA(K) — 5 Mic(con(C)V (K) /35 (K)o (K)  (23)

where Mg denotes the perimeter in the Minkowski-space with gauge body K. In
fact we do not need Mg explicitly, because OLER showed in formula 6 on p. 48 of
[O]:

V(conv(C, + K)) > V(conv(C,)) + %MK(Cn)V(K)/(SS(K) + V(K).

Hence (1/2)M (conv(C,))V(K)/és(K) < 2A(conv(Cy),K) (cf. (2.1)) and to-
gether with (2.3) it follows

V(conv(Cy)) > (n — 1)A(K) — 2A(conv(Cy,), K)v(K)
which implies (2.2) by (2.1). O

3. Relations between §(K, p) and §(K)

In this section we prove a result for arbitrary (non-symmetric) convex bodies K.
For this we give a definition of P,,(K) without the distance function. Let K¢ C E¢
be the set of all convex bodies and for K € K? let

P.(K) ={C, C E¢. C, = {xl,...,m"}, int(z' + K) Nint(z/ + K) =0, i # 7}

Now, let 6(K,n,p) and §(K,p) for K € K? be defined in the same way as in
Definition 0.1. Further let 6(K) be the density of a densest packing of translates
of K.
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Theorem 3.1. Let K € K? and p € R>° such that int(K) Nint(y + K) = 0 holds
forally ¢ pK. Then for n € N

6(K,n,p) < (K).

On account of (0.1), which is also valid for K € K%, we have for such a p as in
Theorem 3.1 §(K, p) = §(K). Hence we get

Corollary 3.1. For K € K& and p > 2 or for K € K% and p > d + 1 holds

3(K, p) = d(K).

Proof. Let K € K¢, p > 2 and y ¢ pK. Assume int(K) Nint(y + K) # (. Then
there exist z,z € int(K) with = y + z and thus y € K 4+ (=K) = 2K which
contradicts the choice of p.

Let K € K% Since §(K,n,p) is invariant with respect to translations of K
we may assume K + (—K) C (d + 1)K (cf. [R3, p. 43]). As above we obtain
int(K)Nint(y+ K) =0 forall y ¢ (d+1)K. O

Corollary 3.2. For K € KZ holds
pe(K) < 2.

The proof of Theorem 3.1 is based on the following idea: Assume that C,, +pK is
a finite packing with §(K,n, p) > 0(K). Then a packing lattice A of conv(C,, + pK)
with elementary cell Z is chosen. For every z € Z the lattice packing L(conv(C,, +
pK) + z) = {(conv(C,, + pK) + z) + g : g € A} is superposed on a densest infinite
packing {K + a : a € P(K)} with density 6(K). Further all K 4+ a, a € P(K),
which meet L(conv(C,, + pK) + z) are deleted.

A standard averaging argument with respect to z shows the existence of an infi-
nite packing of translates of K with density > ¢(K) which contradicts the definition
of §(K). Hence §(K,n,p) < §(K). The proof gives a careful analysis of this idea.

Proof of Theorem 3.1. Let A(K) = V(K)/6(K). Assume there exist K € K¢,
p € R0 satisfying the assumption and an integer n with (K, n, p) > §(K). Then
there is a C,, € P, (K) and an € > 0 with

V(conv(C,, + pK)) =n-A(K) —e. (3.1)

Let A be a packing lattice of conv(C,, + pK). We may assume that conv(C,, + pK)
is contained in a fixed elementary cell Z of A. From (3.1) follows

(1 _ V(conv(C, + pK))) det(A) nAK)
det(A) det(A) +€  det(A) + ¢

From this we get with A(K) < det(A) and multiplication with §(K):

<1 _ V(conv(Cy +,0K))> V(K) nV(K) > §(K). (3.2)

det(A) A(K)+e det(A) +e
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Now, for A > 0 let Wy € KZ be the cube of edge length 2)\. Apparently there is a
constant p only depending on Z such that for every A > 0 there is a subset Ly C A
such that W\ +Z C Ly + Z and Ly +2Z C Wy4,.

By the definition of 6(K) (cf. e.g. [GL]) for every A > 0 there exists a set
Cmo\) € 'Pm()\)(K) such that Cmo\) + K C Wy and

L mV(E)

Ao V(W) = J(K).

Obviously limy o0 V(W) /V (W) = 1, so there exists a ¢ > 0 and a set Cy,(¢) €
Pme)(K) with Cpy¢y + K C W such that

V(K) < m(¢)V(K) and nV(K) < nV (K) card(L)
AK)+e ™ V(Weyp) det(A)+e = V(Weyn)

(3.3)
For every z € Z we construct a finite packing Cy, () € Pp(y)(K) — for a suitable
n(z) € N - with Cy, ;) + K C Wy, in the following way:

Cnz)y =1z + L +Cr} U{y € Cpy¢) : y & o+ L¢ + conv(Cy, + pK)}.

The choice of p guarantees that C,,(,) is a packing. While it is difficult to determine
the cardinality n(x) of Cy,(,) for fixed = it is easy to calculate [, _, n(x)dz. To this
end for every y € Cp,(¢) let x,(z) = 1 for y ¢ z+ L¢+conv(Cy, +pK) and x,(z) =0
else. Then

/xEZ n(z)dz = /xEZ <n card(L¢) + ZyECm(C) Xy($)> dx
= ndet(A) card(L¢) + m(() (det(A) — V(conv(C,, + pK))) .

So there is a z € Z with

V(conv(C,, + pK))
n(z) > m(() (1 — det(A) ) + ncard(L)

or

V(WC-HJ«)

>

m(¢)V(K) (1 _ V(conv(Cyp + pK))) nV(K)card(L)
V(Wesr) det(A) '

From (3.2) and (3.3) follows

—— > 0(K).
V(WC+N)
But this contradicts the definition of §(K) since Cy,(,) + K C Wey . O

4. The sausage conjecture

For the sausage arrangement of n-balls with radius p we have (cf. (1.3))
V(conv (S, + pB?) = 2(n — 1) kg1 - p*~ 1 + kg - pt. (4.1)

The purpose of this section is to prove
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Theorem 4.1. For every p < pp, = 2//3 exists a ’sausage’-dimension d(p) such
that for d > d(p)

min{V (conv(C, 4+ pB%) : C,, € Pn(B%)} = V(conv(S, + pB?)).

Corollary 4.1.
lidm inf p,(B%) > 2/V/3.
—00

Theorem 4.2. d(1) < 13.387.

Hence the ’'sausage’-conjecture of L. FEJES TOTH is verified for d > 13.387.

The rather lengthy proofs of the results in this and the following section are based
on the following observation: Assume that C,, = {z',...,z"} is not a sausage
arrangement. We consider the DIRICHLET- VORONOI-cell (DV-cell) H of z for some
xz € {z!,...,2"}. The deviation from the sausage arrangement is measured by a
parameter ¢. Then C, + pB? has a sausage part and a part which is the cartesian
product of a 2-dimensional set and essentially a (d — 2)-ball of radius p.

The sausage part is of size rg_1p% (2 — const;¢) and the other part is of size
constgﬁd_gpd_2¢, where const; and consts are constants independent of d. The
results follow from kg_o/Kk4_1 — 00 as d — 0.

PROOF OF THEOREM 4.1

In the sequel let C,, € P, (B?) with C,, = {z!,..., 2"} be an arbitrary but fixed
arrangement and let p € [1, p,,) (cf. Theorem 1.1). The proof is based on a careful
analysis of the volume part which belongs to a DV-cell

Hy={zc BY:2(x,2/ —z%) < |27 — 2", 1 <j<n}, 1<i<n,

of the considered arrangement. H; is called the DV-cell with respect to z°.
Obviously, V (conv(C,, + pB%)) = 3" V(H; N (conv(C,, + pB?))) and thus by
(4.1) it is sufficient to show V(H; N (conv(C, + pB%))) > 2k4_1p%~! for (n — 2)
DV-cells and V (H; N (conv(C,, + pB%))) > kq_1p%"1 + kgp?/2 for 2 DV-cells. To
this end we consider a fixed DV-cell, say H = H,, with respect to 2 = 0, and
D, = H N (conv(C,, + pB?)). In order to obtain good lower bounds for V(D,) we
need a large 2-dimensional section. To measure this we introduce an angle ¢:

Definition 4.1. Let y/ =27 /|27], 1 <j<n—1 and let

¢ = 1<I£I}«‘i>7(l_1{arccos(|(yk,ylm}’

where arccos(-) is choosen in [0,7/2]. Further let y’t,y72 be defined by

o ¢, if o= m/3 or (y*,y') >0 for L <kl <n—1,
Ji g2\ —
arccos([(w™ ™I = maxfarccos(|(y*,41)]) < (04, o) < 0, else.

1<k,l<n—

We may assume y/t = y', 172 = 92 and observe that in the second case we have
—cos($/2) < (y',y?) < —cos(¢).
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Thus a small ¢ indicates that in a neighbourhood of 0 the arrangement is like the
middle of a sausage (for (y!,y?) < 0) or like the end of a sausage (for (y!,y?) > 0).
Clearly, for ¢ < 7/3 the last case can occur at most twice.

Now, let L be the plane spanned by y!,y? and C(¢) = conv{0,2y!,2y%} N B
We observe C(¢) C H Nconv(C,,). We distinguish several parts of D, according to
their position relative to C(¢). To this end we use the nearest point map (cf. [McS]):
For a convex body K C E? the nearest point map p : B¢ — E? with respect to K
is given by

p(z) =y € K with |z —y| = min{|z — 2| : z € K}.

Using the nearest point map with respect to C(¢) we define
Definition 4.2.

D; =cl{z € D, : p(z) € relint C(¢)},

D? = cl{z € D, : p(z) € relint conv{0,y"} U relint conv{0, y*}},
Di =cl{z € D, : p(z) =0},

Dﬁ =cl{x € D, : p(x) € relint conv{2y', 2y }}.

Clearly, V(D,) > 2?21 V(D.). The proof of Theorem 4.1 depends on various
estimates of the V(Df)). These estimates are prepared by the following two Lemmas.

Lemma 4.1. Letw € HN S v € w™ NS4 e >0 with u > 1/(p +€) and
(u+€)v e H. Then
(,u, €) - conv{0,w} + pv € H,

with ¢i(pu,e) = €/+/(1 + €)?

Proof. The assertion follows with some elementary calculation from B? C H and
the convexity of H. O

Lemma 4.2. V(C(¢)) > ¢/2.

Proof. Let v = (y',y?), 0 = arccos(]y|) and cone{y', 4%} be the positive hull of
yt,y?. First, suppose v > —1/2. Then cone{y*,y?} N B C C(¢) and thus

V(C(g) > 0/2. (4.2)

Next, assume v < —1/2 and let M be the set of points x with # € cone{y*, y?} N B¢
and = ¢ C(¢). Obviously, we have V(C(4)) = V (cone{y!,y?} N BY) — V(M) and
by elementary calculation we get

V(C(¢) = = ; o (‘arccos(2sin(6/2)) — 2sin(§/2)y/1 — (2sin(5/2))?2 ).

On account of arcsin(z) = 7/2 — arccos(z) substituting z = 2sin(d/2) in the right
hand side yields V(C(¢)) — 0 > min{f(x) : = € [0,1]} with f(z) = arcsin(z) —
3arcsin(z/2) +zv1 — z2. Now, f(0) = f(1) = 0, and for the second derivate f"(z)
we have f"(z) <0 for z € [0,1]. Hence f(z) > 0 for z € [0, 1] and thus we get

V(C(@) > 6. (43)
If (y',4%) > —1/2 we have § = ¢ and in the case (y',y%) < —1/2 we have § > ¢/2.
Thus the assertion follows by (4.2) and (4.3). O

Now, we start with the estimates
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Lemma 4.3. Let sin(¢) < 1/p. Then

¢

V(D) > £ ei(p,1/ sin(d) — p)*p" has.

Proof. By the definition of ¢ we have (7, y*)| >cos(¢) for 1 <j<n—1,i=12
This implies (y?,v,:) < sin(¢) for all v, € ((y*)~ 4), i = 1,2. Hence by the
definition of H

(1/sin(@)) - (W)~ N BY C H, i=1.2 (4.4
Thus (1/sin(¢))(L~ N B%) C H and by Lemma 4.1 we get c;(p,1/sin(¢) — p) -
C(¢) +p(B*NL~) C D}. Now the assertion follows from Lemma 4.2. O

Lemma 4.4. Let sin(¢) < 1/p. Then
V(D2) > ei(p, 1/ sin(@) — P b1,
Proof. From (4.4) and Lemma 4.1 follows
c1(p, 1/ sin(¢) — p) - conv{0,y'} + p((y')~ N B?) C D, (4.5)
Now, let a® € L be the outward normal vector of conv{0,y'} with respect to

conv{0,y',4°}, i = 1,2. Then {z € E%: (a’,z) > 0} N D, C D2 and by (4.5)
we get the assertion. O

Lemma 4.5. Let sin(¢) < 1/p, ¢ < n/3 and {y',y?) > 0. Then

1—-¢/m
V(D3) > 2¢/ Pk

Proof. Let F' C L be the set of all outward unit normal vectors of supporting lines
at 0 with respect to conv{0,y',y?}. By the definition of y*, y? we have (y’,y*) >
cos(¢) for 1 <k <n—1,i=1,2, and thus (3*,a) <0,1<i<n—1,foralla € F.
Now pv € D, for v € L™ N B? (cf. (4.4)) and hence we get (F + L™) N pB? C D3,
Since V(F') = (1 — ¢/m)/2 we obtain the required estimate. O

Lemma 4.6. Let tan(¢) < 1/p, ¢ < n/3 and (y',y?) < 0. Then

cos(¢) — psin(¢) 44
V(D) > o (/2 k.

Proof. Let w = (y' — y?)/|y' — %?|. In particular we have ¢ < m/3 and thus
W9, y1) > cos($) & (u,1%) < —cos(@), 1< j <n— 1. Tt follows |{y?,w)] > cos(9)
which implies (y7,v) < sin(¢) for all v € w™ N B%. Thus for v € w™ N B? and for
A € [0,1] we obtain

(A2y" + (1 = N2y +pv,37) <

{ A(2cos(¢) +2) — 2cos(¢) + psin(g),  (y7,y") > cos(¢),
—X(2cos(¢) +2) + 2+ psin(¢), (y,y') < —cos(¢).
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Hence by the definition of H
>‘2y1 + (]‘ - >‘)2y2 + p(w_ N Bd) C H7 for A € [62(¢7p)71 - 62(¢a p)]7

with ca(¢,p) = (1 + psin(¢))/(2 + 2cos(¢p)). Observe, by assumption the given
interval is nonempty and A2y' + (1 — \)2y? € C(¢). Thus

A2y + (1= 0)2y” + p(w™ N BY) C Dy, A€ [e2(¢,p). 1 — ca(p, p)].
Let u € L be the outward unit normal vector of conv{2y!, 2y} with respect to

C(¢) and let v’ € {x € E?: x € (w~NBY), (u,z) > 0}. We have (conv{2y',2y%} +
pv') N D, C D; and thus we obtain

_1Kd—

2
O
Lemma 4.7. Let ¢ > 0. Then for every ¢ > 0 such that p+ € < pm,
¢ 2 d-2 Kd—2
V(DY) > ~. —_—
( p) =9 cl(p,e) p 1+03(,0+€,d)
with
1 p
cslpod) = [ (U= a?) @I ) [ (1) s, e (1, p),
1/,u 1/ﬂm
Proof. We have
o2
V(D,) > / / dvdw. (4.6)
d—2 C(¢) J{zeLtnSdLlw+pzeH}

In the sequel we show that for a certain set G C C(¢) with V(G) > 0 the above
inner integral is of order k4_5. For this purpose we first consider the inner integral
atw=0andset M, ={z€ L NS :pz2¢ H}, K,={2z€ L NS 1:pz € H}.
Assume M, # (. Then L™ N pS9=1 intersects the affine hull of certain facets F;,
of the DV-cell H, j = 1,...,k. Let v'9 € L™ be the outer unit normal vector of
aff{F;,;} N L™. Since the distance of a (d — 2)-dimensional face of H from 0 is at
least pp, ([R3]) we get aff{F;,} N (L™ N pS9~1) C relint{F;, N L™} and there exists
an o, € [1, p] such that a; v € relint{F;, N L~}. With

M;, = {z € (LI~ N1 897, (,05) > oy, /p}
we have M, = U;?:lMij. Now for 1 < j < k define
Ki, = {z € (L~ N59Y), oy, /pm < (5,07) < o, /o),

and let z € K;;. With v, = aij/(z,vif) > p we get v,z € aff{F;;} N L~ and

Y22 — aijv”\z < pZ - 0412],. With the same reasoning as above we obtain v,z €
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F;; N L™. This shows relint{K},} Nrelint{K;, } = 0, k # [, and U'_,K;, C K.
Thus we may write

/ do — pr d”"‘fMp dv (d—2)kg—2
K, 1+fMpdv/prdv_1+fMldv/ledv

for a suitable index I € {ji,...,jx}. Let g(z) = (1—22)(?=5)/2 and for v € [1, p) set

1) = [, g@)da, fala) = [ g(a)dw. Thus [y dof [ do = fi(aa)/falon).
The first derivative of f1(y)/f2(y) shows that this function is monotonely decreasing

and thus 49
/ > w‘ (4.7)
K, I+c3 (:01 d)
Now, by Lemma 4.1 we know: z € L~NS4"! with (p+€)z € H = c1(p, €)C(p)+pz €
H. Hence we obtain for every € > 0 with p + € < p,, from (4.6) and (4.7)

2 d-2 kd—2

V(D;) > = ci(p,e)p TTaptead

EVJRSE

O

Proof of Theorem 4.1. Having Lemmas 4.3 — 4.7 the proof is an easy consequence of
limg_yo0 Ka_1/ka = 00. Let p < pp = 2/v/3 and ¢y = min{arctan(1/p), 7/3}. We
distinguish three cases depending on ¢ and the sign of (y!,4?2). For simplification
we use V(D?) > (1 — psin(¢))p?~1kg_1 (cf. Lemma 4.4).

I). ¢ < ¢p and the assumptions of Lemma 4.5 hold. Then we have by Lemma 4.3,
4.4 and 4.5

V(D,) > V(D;)+V(D2) + V(D3
plha + ppi-? (1 (1 — psin(¢))® szfd)

2
KRd—2 — P Kdg—1 —
5 21— sin(¢o) d-2 — P Kd-1 o

d
P Kd

2 3

> p" g1 +

> p kg +

(4.8)
for all sufficiently large d.
IT). ¢ < ¢o and the assumptions of Lemma 4.6 hold. Then we have by Lemma 4.3,
4.4 and 4.6 and cos(¢) > 1 — ¢2/2

V(D,) >V (D;,)+V(D2) + V(D})

1 (1 — psin(¢o))? > %o )
— 9 —2 -1 — ——pPKd—
) 1—sin2(¢0) Kd-2 P Kd-1 2 Pld—1

> 2p" kg1 + ¢p? (

> de_lnd—la
(4.9)
for all sufficiently large d.
ITT). ¢ > ¢y. Choose an € such that the assumption of Lemma 4.7 holds. Then by
Lemma 4.7.

V(D,)

v

V(D,)
do
2

_ Rd—2 _
=2 ) > 2:0d 1/<‘jd—1a

L+ cs(p+ed

v

-c1(p,€)’p



FINITE AND INFINITE PACKINGS 15

for all sufficiently large d. As the first case occurs at most twice everything is
proved. O

Remark. The constant 2/v/3 in Theorem 4.1 is almost certainly not best possible.
In fact a quick review of the proof shows that it can be replaced by any constant
such that (4.7) holds. It should be possible to prove this inequality for any p < /2
by methods used by ROGERS [R3].

PROOF OF THEOREM 4.2

For the proof of Theorem 4.2 we use the well know relation

/2
k4= TR T (4.10)

Proof of Theorem 4.2. We use the same argumentation as in the proof of Theorem
4.1. We only evaluate V(D;) (p = 1) more carefully. Let ¢y = /4.
I). ¢ < ¢ and the assumptions of Lemma 4.5 hold. Then we have by (4.8)

V(D1) > V(Dy) + V(D7) + V(D3)
11 —sin(¢g) kKg—2  Kd—1 1 )

> ka1 + 2L 4 ¢
Kd—1 + — Ka | =
==l i\21 + sin(¢o) Ka K4 27

K
= Kd-1+ ?d + ¢ka - f1(d)
By (4.10) we get f1(d) > 0 for d > d; = 879 and thus

V(D:) znd_1+%, d>di. (4.11)

IT). ¢ < ¢ and the assumptions of Lemma 4.6 hold. Then we have by (4.9)

V(D) > V(D) +V(D}) + V(D})

11 —sin(¢g) Ka_2 Po
21 +sin(¢g) ka1 2+ 7)>
= 2pd_1f€d_1 + Qbffd—l ’ f2(d)

> 2Kg-1 + Pr4-1 <

By (4.10) we get fo(d) > 0 for d > ds = 4889 and thus
V(_Dl) Z 2f€d_1, d Z d2. (412)

Let ¢* = m/3 + 0.00053.
IID). ¢y < ¢ < ¢*. By Lemma 4.3 and 4.4 we obtain

V(Dy) > V(DY) + V(D?)
¢ 1 —sin(¢) kg—2  2cos(¢p) — 1 + sin(Q)
> 2K4-1 + Kq—1 <§ 1+ sin(¢) fa_1 cos(¢) )
=2Kg_1+ Kg—1 - f3(¢a d)
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The first partial derivative of f3 with respect to ¢ shows that f3 is monotonely
decreasing in ¢ and thus f3(¢,d) > f3(¢*,d). By (4.10) we get f3(¢*,d) > 0 for
d > d3 = 13.387 and thus

V(_Dl) Z 2f€d_1, d Z d3. (413)

IV). ¢* < ¢ < 7/2. By Lemma 4.4 and Lemma 4.7 we may write with ¢* =
0.1545 < pp, — 1

V(Dy) 2 V(Dy) + V(D7)

2> 2K4-1 + Kq—1 (g cer(1,€%)?

=2Kg_1 + Kg—1 - f4(¢a d)

 Kg—2/Ka—1  2cos(¢) — 1+ Sin(¢)>
1+ c3(1 + ¢, d) cos(e)

The mean value theorem of integral calculus shows c3(u,d) > c3(p,d + 1) and thus
fa(b,d) < fa(¢p,d + 1). By numerical calculations which can be carried out in any
desired precision we obtain f4(¢*,d) > 0 for d > dy = 13.387. In particular we
obtain ¢ (1,€*)? (kg_2/kq—1)/ (1 +c3(1+€*,d)) > 1 for all d > dy. But this implies
that f4 is monotonely increasing in ¢ for ¢ € [¢*, 7/2] and d > d4. Hence it follows

V(D) > 26q_1, d > dy. (4.14)

From (4.11)—(4.14) we obtain the assertion (cf. the Proof of Theorem 4.1.) O

5. Sausages for centrally symmetric convex bodies

In this section we prove an analogue of Theorem 4.1 for general centrally sym-
metric convex bodies.

Theorem 5.1. There is a positive function (x,y) on [1, 00) XN with the properties

lim (1) = % and  P(x1,y) > Ploa,y) if 11 < 2,

y—00
such that for K € K¢ with inradius r and circumradius R and for p < ¢(R/r,d)

Cnéng&K){V(conv(Cn +pK))} = ué%idril{V(conv(Sn(u, K) +pK))}.

By a theorem of JOHN ([J], [GL, pp. 13]) we can always achieve R(AK)/r(AK) <
V/d by a suitable linear transformation A. Thus we can deduce from Theorem 5.1
(cf. Theorem 1.1 (4))

Corollary 5.1. Let K € K. There exists a constant pg > 0 only depending on d
such that for p < pq

Cnéng&K){V(conv(Cn +pK))} = ué%idril{V(conv(Sn(u, K) +pK))}.

For the sausage radius we obtain

Corollary 5.2. For each d there is a constant pg > 0 such that

ps(K) > pa for all K € K{.
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PROOF OF THEOREM 5.1

In the sequel let K € KZ be a centrally symmetric convex body with distance
function f : E? — R, inradius r and circumradius R. As in the proof of Theorem
4.1 let H be a fixed DV-cell of the arrangement C,, = {z',... 2"} € P,(K)
with respect to 2" = 0 and let ¢, v/, L be defined as in section 4. Now, let
D, = H N (conv(C,, + pK)) and C(¢) = conv{0,2y*/f(y'),2y*/f(y*)} N H. With
respect to C(¢) we define D7, 1 <i < 4, as in Definiton 4.2. Since the arrangement
is admissible, we have |z?| > 2/f(y") and thus 2y°/f(y%) € conv(C,,). In particular

{z € BT : (z,97) <1/f(y"),1<j<n-1} C H. (5.1)

Observe that 1/R < f(v) < 1/r for v € S4~1. Further we define
Definition 5.1. Let u € S1. For y € K, let

AMy,u) =min{|]A|: A€ER and y+ \u € K}, s(u) = max{\(y,u):y € K},
prc = max{1/(s(u)f () : u € 591},

. _A(yau)a ny - A(yau)u €K
(o) = { Ay, u),  if y+ Ay, u)u € K.

Obviously A(y,u) < y/R? — |y|? and for |y| < r the point y belongs to K and
thus A(y,u) = 0. Hence

s(u)| < VR?2—r?and pg >r/VR?—1r2 (5.2)

From the definition we have s(y,u) = —s(—y,u). In the case K = B? we obtain
s(u) = 0 and we may set pg = oco. For the proof we need the following two Lemmas

Lemma 5.1. Let K € K¢ with distance function f, inradius v and circumradius
R. Then for v,w € S%1

(v, w)| = cos(¢) = f(v) < (1+¢-g(R/r)) f(w),

where g : [1,00) — R is a monotonely increasing function with g(1) = 0.

Proof. Assume (v,w) > cos(¢) and let f(w) < f(v). Further let a € E? be a
unit outward normal vector of a supporting hyperplane S of K with v/f(v) €
KnS. Assume (a,v/f(v)) =~ = cos(n)/f(v). On account of (v, w) > cos(¢) and

(@, w/f(w)) < {a,v/f(v)) we obtain yf(w) > (a,w) > cos(¢) cos(n) — sin(¢)(1 —
cos?(n))/? or

1> (£(0)/f (w)) (cos(@) — sin(p) /(1] cos(n))2 —1).
Now, cos(n) > r/R, f(v)/f(w) < R/r and thus

flv) < { (cos(p) —sin(¢)\/(R/r)2 — 1)L, ¢ < arccos((r/R)?) — arccos(r/R)
f(w) = | R/r, else.

From this it is not hard to deduce an appropriate function g. O
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For abbreviation we set R = R/r and v(¢, R) = 1 + ¢g(R). Moreover we define
the functions

Q2(¢aﬁ)Zmax{QU(¢’R)_1+(Pm§)sin(¢)V(¢,§) v9. T }

2v(¢, R) + 2 cos(¢) " 2,/2 + 2 cos(¢)
£(¢. ) = min 2cos(¢) + 1/v(¢, R) — (pmR) sin(¢) 1_ v($, R)
2 2v(¢, R) + 2 cos(¢) T 2y/2 4 2cos(¢)

7(p, ¢, R) = (1 = (pR) sin(¢)) /v (¢, R).
Lemma 5.2. Let sin(¢) < 1/(pmR). Then for p < pp and i = 1,2

v(p, ¢, R) - conv{0, 4"/ f(y')} + pR ((y')" N B?) C H. (5.3)

Proof. Apparently, this statement is closely related to Lemma 4.4, but in contrast
to Lemma 4.4 we can not make use of Lemma 4.1 because in general y//f(y’) ¢
rS?1. Now, let v,i € ((y')” N B%), i = 1,2. By the definition of ¢ we have
(y7,v,1) < sin(¢) (cf. Lemma 4.3) and on account of the definition of v(¢, R) we
obtain (\y*/f(y') + pRuy:,y7) < 1/f(y7), i = 1,2, if X < ¥(p, $, R) and hence by
(5.1) we get (5.3). O

Now, we transfer the results of the Lemmas 4.3 — 4.7 to the centrally symmetric
convex body K.

Lemma 5.3. Let sin(¢) < 1/(pmR). Then for p < pn,

VD) 2t L (.1 sin(g) — )" s,

Proof. Immediate consequence of rB¢ C D, and Lemma 4.3. g

The next two Lemmas correspond to Lemma 4.4 and Lemma 4.5. Since in
general the set {z € D2 : (y',z) =~} for v € [0,7(p, ¢, R)/f(y")] does not contain
a set of volume p?~'V(K,i)/2 as in the case K = B? we have to evaluate these
sections more carefully. To this end we distinguish two cases depending on the sign
of (y',4?). In the following let z' € L, i = 1,2, be the outward unit normal vectors
of conv{0,2y"/f(y*)} with respect to C(¢4). Further let u € S4~! with

V(Kz) 4.1
f@ "’
and let B(K) = V(Kz)/f (7).

Lemma 5.4. Let (y',4%) < —cos(¢p) and let ¢ satisfy: sin(¢) < 1/(pmR), and
v(¢, R) < 2cos(¢p). Then for p < min{p,,, px }

2(n—1)

+ p?V(K) = min{V (conv (S, (u, K) + pK)) : u € S},

V(D2) > v(p, $ ) (pd‘lﬂ(K) - zjfj;((z)) NG rzpd—le—md_2> |
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Proof. For i = 1,2 let Mi(p) = {z € conv(Cy, + pK) : (y',z) = 7, (2, x) >
0, |z — yy'| < pR} with v € [0,7(p, ¢, R)/f(y")]. In the following we show

v (p) > piot L) s (e (5.4

2 cos(¢)

By (5.3) we have M (p) C D2 and on account of the definition of s(y*) (5.4) implies
the assertion. For the proof of (5.4) we will only consider the case i = 1; the other
case can be treated similarly. Before we start we introduce some notation:

T ={z € pK, : (z',z) >0},
T ={z € T:s(z/py') <0}, T°°={ze€T:s(z/p,y') >0},
M, = {z € conv(Cy, + pK) : (y',2) =7}, MY = M)(p) — vy’
2sin(¢) _ syt S0(P)
e eeose) TP gy

Obviously we have V(T) = p¢='V(K,1)/2 and a(¢) > a(z,$,v). First we claim

a(z, ¢,7) =p-s(z/p.y")

T=" + yy* C M}(p). (5.5)

To prove this, it suffices to show T<° + yy! C conv(C,, + pK). Let z € T<0
and let = (p-s(z/p,y') + (z',y') —7)/(z',y"). Since p-s(z/p,y') =7 <0
we have u < 1. Further p < pg yields p - s(z/p,y') > —1/f(y') and on account
of v < 1/f(y'), (z',y') = [z'] > 2/f(y') it follows u > 0. Now, z +yy' =
(z+ps(x/p,y")y") + (1 —p)(z+ps(z/p, y" )y + ') € conv(Cy +pK). This shows
(5.5). Next we claim

€T = 1 — a(z,¢,7)2' +yy' € M,. (5.6)

Let z € T>% and let u = (p - s(z/p,y") f(¥?))/(vf(y?) + 2cos(p)). It is clear that
p > 0. By the definition of px and by the choice of ¢ we obtain p-s(z/p,y') f(y?) <
fW?)/fyh) <v(g,R) < 2cos(¢), where the second inequality follows from Lemma
5.1. Hence g < 1 and on account of y?> = —cos(¢)y' — sin(¢)z! we get = —
a(z, ¢, v)2 +yyt = p(2y?/ f(y?)rat+ps(z/pyt)yt) +(1—p) (vy' +z+ps(z/p, y*)yt)
€ conv(C,, + pK), which implies (5.6).

Now, let U be the orthogonal projection of T onto the hyperplane {z € E? :
(z',z) = 0}. For z € U let U, = max{v € R: z +vz' € MJ} , v, = min{v € R:
z+uvzl € MS} and let o, o, be defined in the same way with respect to 7" instead
of MY. Since V(M1(p)) > [,; Uz —v,dz and p*~'V(K,1)/2 =V (T) = [, 0, —c,dx
it suffices to show for (5.4) that for z € U

Observe, if (2,z) — a(x,¢,v) > 0 holds for z € T>° then we also have z —

alz, ¢, v)z" +vy' € MJ(p). Thus (5.7) follows immediately from (5.5), (5.6) and
the convexity of M3 (p). O
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Lemma 5.5. Let sin(¢) < 1/(pmR), ¢ < 7/3 and (y*,y?) > 0. Then for p <
min{py,, prc }

V(D) + V(DY) 2 6L (0,0, B HK) — L (o)

Proof. Again we introduce some sets

U ={z € pK: {(y*z)>0A
U ={zecpK: (% z)<0A 'z

TP = (& € conv{pK,ai + pK}: 0 < (5,2} < 1(p, 6, F) A (s, 2) > 0, i = 1,2,

T! = {z € conv{pK,z" + pK} : (3 )SO (', 2) <OANz ¢ pK},i=1,2.

Obviously, U C D3 and on account of (5.3) we get T} C D2. First we show that T}
belongs to D2UD3. Let z € T}. Then z € conv{pRB*, z' + pRB*} and (y*,z) <0
yields |z| < pR. Since ¢ < 7/3 we have (y’,y?) > cos(¢) for 1 < j < n —1
and so (y’,z) < sin(¢)|z| < sin(¢)pR < r. Here the last inequality follows by
the choice of ¢. Now r < 1/f(y?) and from (5.1) we obtain x € H which implies
z € D2UD3. Onaccount of V(U'UU™) = p?V(K)/2 and dim(U'N(T} UT})) < d—1,
dim(T{ NTY) <d—1, dim(Ty NT5) < d — 1 we may write

V(D2UD3) > VU U(T{ UTY) U (Ty UTy))
>VUY+VITUTH + V(T3 UTY) - V(TINTY) = V(TT NTY)

2
V(K
> VB S vy oty - v - vt nag) - v ),
N (5.8)
For i = 1,2 we claim
_ V(K,)
V(TT UT!) > y(p, ¢, R) - p?~! vl 5.9
( ) 2700 d R) - p" (5.9)

To prove this, it suffices to show that we have for Mfy ={z €Tl : (y',z) =y}U{z €
T} : (y',2) = —v} and 0 < v < y(p, 4. R)/f (y')

V(Ky:)

) d—1
V(M) >p 5

(5.10)
To this end let z € pK,: with (z*,z) > 0.

a) p-S(w/p, <.

Let p = ((z',y") +p-s(z/p,y") —7)/(z",y'). As in the proof of (5.5) we may deduce
p € [0,1] and obtain z+vy" = p(z+p- S(x/p, Ny )+ (1—p)(z+p-s(z/p, y' )y’ +a') €
conv{pK, z' +pK} Hence z +yy' € T} and z + yy' € M.

b) p-s(z/p.y’) > . ,

Assume z + vy' € pK. Then we have s(z/p,y*) < v/p which contradicts the
assumption. Hence —z — vy’ §§ pK and further (2, —z — vy') < 0. Now let
= (ot y)Ey—ps(a/p,5) /(o). Again u € [0, 1), Since —z—p-s(z/p,5' )y’ =
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—z+p-s(—z/p,y")y" € pK we obtain —z —yy' = p(—z —p-s(z/p,y")y") + (1 -
p)(—=z —p-s(xz/p,y")y’ + 1°) € conv{pK,z’ + pK}. Thus we have —z — yy! € T}
and —z —yy' € M}y

Altogether we get (5.10) and thus (5.9). Now by definition we have U™ N (T} N
T5) =0 and U"U (T'NT5) C {z € B4 : |z| < pRA (¥, 2) > 0A (y',z) <0}
Further (TT NTY) C {z € E4: |z| < pRA (y%,2) <O0A (y,z) > 0}. By (5.9) and
(5.8) we get the assertion. O

Lemma 5.6. Let (y',4%) < 0 and let ¢ satisfy: ¢ < m/3 and cy(¢p, R) < C2(h, R).
Then for p < min{pm,, px}

— 2 + 2 cos(¢)

V(D3) > (@2(4, R) — (¢, R)) - T p? - BK).

Proof. Let u(¢, R) (u(¢, R)) be the first expression in the definition of ¢,(¢, R)

(c2(4, R)) and let w = (y'/f(y") = y*/f(y*))/|y* [ f(y*) — v/ f(y®)]. On account
of the definition of (¢, R) and (5.1) we obtain with the method used in the proof
of Lemma 4.6

2yt 2R o -
Af(yl)Jr(1 A)f(y2)+Rp( NBY) C H, X € [u(¢, R),u(¢, R)].  (5.11)

By assumption the above interval is well defined. Without loss of generality we

assume f(y?) < f(y') and thus |y'/f(y') — »?/f(*)| = |y' —¢?|/f(y"). On
account of |(y', w)| > cos(¢) we obtain with respect to Lemma 5.1

N A I et s DA ) 2+ 2cos(¢)
fw) ‘f(yl) 1627 ) v B v B

Let 23 be the outward normal vector of conv{2y'/f(y'),2y?/f(y?)} with respect to
C(¢) and for v € ey (¢, ), ool )] let M, = {x € conv{2y®] (1) +0K. 25/ {(3")
+pK} =92y f(y') +(1=7)2y%/ f(y?) +y with (w,y) = 0A (2%, y) > 0}. From
(5.11) we get M., C D and we claim

(5.12)

(5.13)

Let T ={y € pKy, : (2°,y) > 0}. Fory € T let u =1 — (p- s(y/p,w))(2ly*/f(y")
—42/f(%?)]). On account of (5.12), the choice of v and the definition of px we
have p € [0,1]. Hence y2y'/f(y') + (1 —7)2y?/ f(y?) +y = u(2y*/f(y') +y +p-
s(y/p,w)w) + (1 — p)(2y*/f(y*) +y +p - s(y/p,w)w) € M,. Thus v2y*/f(y') +
(1 —7)2y%/f(y*) + T C M, and we obtain (5.13). Hence

. 2y1 2y2

V(D) > (@(¢, R) — ¢y (¢, R)) - o T i1 V(Ky)

2

> @) - @ R) Lo ”%
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Lemma 5.7. Let ¢ > 0 and c3(p,d) be defined as in Lemma 4.7. Then for every
P < pm and € > 0 such that p+ € < pp,

V(D}J) > Td% -c1(p, 6)2,0d_2 “ka—2/(1 +e3(p+€,d)).

Proof. Immediate consequence of rB¢ C D, and Lemma 4.7. g

Proof of Theorem 5.1. Let K be a centrally symmetric convex body with circum-
radius R and inradius r. Further let ¢ € (0,7/2] satisfy ¢a(¢, R) > c5(9, R),
sin(¢) < 1/(pmR) and v(p, R) < 2cos(p). Set ¢o = min{¢p, 7/3}. Observe that ¢g
depends only on the ratio R/r.

As in the proof of Theorem 4.1 we distinguish three cases depending on ¢ and
the sign of (y!, y?). Since the proof is completely analogous to the proof of Theorem
4.1 we only give the essential steps.

I). ¢ < ¢o and the assumptions of Lemma 5.5 hold. By Lemma 5.3 and Lemma 5.5
we get for p < min{p,,, px}

V(D) 2 V(D) + V(DY) + V(D = Yt gy g (o Bd),

where f; is a function with the following properties: f; is continuous in p and R,
monotonely decreasing in R and f;(0, R,d) > 0. Thus there exists a 1 (R,d) > 0
such that V(K)

V(Dp) > ——=p" + BK)p"™",  p€0,41(R.d)].
IT). ¢ < ¢g and the assumptions of Lemma 5.6 hold. By Lemma 5.3, 5.4 and 5.6
we get for p < {pm, px}

V(D,) > V(D,)+V(D2) +V(D,) > 2B(K)p"~" + ¢p~*r" - fa(p, R, d),
for a certain function f, with the same properties as fi. Thus there exists a
12 (R, d) > 0 such that
V(Dﬂ) Z 2/6(K)pd_1a P € [0a¢2(ﬁa d)]

II). ¢ > ¢g. For 0 < p < py, let v(p) = max{ci(p,€)?/(1 + c3(p + €,d)) : € >
0, p+ € < ppm}. Then by Lemma 5.7

V(D,) > V(DY) = 1€ 012, _yy(p) 2 28(K)p"" + 1" 30, R, d),

for a certain function f3 with the same properties as fi. Thus there exists a
3(R,d) > 0 such that

V(D,) > 28(K)p*™", pel[0,43(R,d).

Now, let (R, d) = min{¢(R,d), ¥2(R,d), 3(R,d)}. As the first case occurs at
most twice the assertion of Theorem 5.1 is proved for p < (R,d). Since the
functions v;(R, d) are monotonely decreasing in R we also have this property for
YR, d).

Assume R = 1. Thus K is a ball with radius 1, say. We obtain px = oo,
9(R) =0, v(¢,R) =1, (pR) = p and ¢, (¢, R) = c2(, pm), C2(¢, R) = 1 — c2(¢, pm)
(cf. Lemma 4.6). Thus Lemmas 5.3 — 5.7 become the appropriate Lemmas of section
4, where Lemma 5.5 is a combination of Lemma 4.4 and 4.5. Since fixing p = py, in
Lemma 4.6 has no influence on the proof of Theorem 4.1 we can choose the functions
fi(p, R,d), 1 <i <3, in such a way that limg_, o ¥(1,d) = pp,. O



[BG]
[BGW]
[BHW]
[BF]
[B&1]
[B&2]
[B&3]
[B&H]
[CS]

[EGH]
[FGW]

[FK]

[F]
[FG]

[GWZ]
(Gr]
[GW]
[G]
[GL]
[J]
[McS]

[O]
[R1]

[R2]

[R3]
W]

FINITE AND INFINITE PACKINGS 23

REFERENCES

U. Betke and P. Gritzmann, ber L. Fejes Tth’s Wurstvermutung in kleinen Dimensionen,
Acta Math. Hungar. 43 (1984), 299-307.

P. Betke, P. Gritzmann and J.M. Wills, Slices of L. Fejes Tth’s Sausage Conjecture,
Mathematika 29 (1982), 194-201.

[U. Betke, M. Henk and J.M. Wills, Finite and Infinite Lattice Packings, in preparation.
T. Bonnesen and W. Fenchel, Theorie der konvexen Krper, Springer, Berlin, 1934.

K. Boroczky, Jr., Intrinsic Volumes of finite ball-packings, PhD thesis, University of Cal-
gary, 1992.

, About four-ball packings, Mathematika (to appear).

, Proceedings of the conference on intuitive Geometry, Szeged, 1991.

K. Boréczky, Jr. and M. Henk, Radii and the Sausage Conjecture (to appear).

J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer, New
York, 1988.

P. Erds, P.M. Gruber and J. Hammer, Lattice Points, Longman, Essex, 1989.

[G. Fejes Tth, P. Gritzmann and J.M. Wills, Finite Sphere Packing and Sphere Covering,
Discrete Comp. Geom. 4 (1989), 19-40.

G. Fejes Tth and W. Kuperberg, Packing and Covering (Chapter 3.8), Handbook of
Convex Geometry (P.M. Gruber and J.M. Wills, eds.), North Holland, Amsterdam, 1993.
L. Fejes Tth, Research Problem 13, Period. Math. Hungar. 6 (1975), 197-199.

J.H. Folkman and R.L. Graham, A Packing Inequality for Compact Convex Subsets of
the Plane, Canad. Math. Bull. 12 (1969), 745-752.

R.L. Graham, H.S. Witsenhausen and H.J. Zassenhaus, On Tightest Packings in the
Minkowski Plane, Pacific J. Math. 41 (1972), 699-715.

P. Gritzmann, Finite Packungen und Uberdeckungen, Habilitationsschrift, Universitat-GH
Siegen, 1984.

P. Gritzmann and J.M. Wills, Finite Packing and Covering (Chapter 3.4), Handbook of
Convex Geometry (P.M. Gruber and J.M. Wills, eds.), North Holland, Amsterdam, 1993.
H. Groemer, ber die Einlagerungen von Kreisen in einem konvezen Bereich, Math. Z. 73
(1960), 285—294.

P.M. Gruber and C.G. Lekkerkerker, Geometry of Numbers, North Holland, Amsterdam,
1987.

F. John, Ezxtremum problems with inequalities as subsidiary conditions, Studies and essays
presented to R. Courant (1948), 187-204.

P. McMullen and G.C. Shephard, Convez polytopes and the upper bound conjecture, Cam-
bridge University Press, 1971.

N. Oler, An Inequality in the Geometry of Numbers, Acta Math. 105 (1961a), 19-48.
C.A. Rogers, The Closest Packing of Conver Two-Dimensional Domains, Acta Math. 86
(1951), 309-321.

, The Closest Packing of Conver Two-Dimensional Domains, Corrig., Acta Math.
104 (1960), 305-306.

, Packing and Covering, Cambridge University Press, 1964.

G. Wegner, Uber endliche Kreispackungen in der Ebene, Studia Sci. Math. Hung. 21
(1986), 1-28.

MATHEMATISCHES INSTITUT, UNIVERSITT SIEGEN, HLDERLINSTRASSE 3, D-57068 SIEGEN,
FEDERAL REPUBLIC OF GERMANY.
E-mail address: henk@hrz.uni-siegen.dbp.de or wills@hrz.uni-siegen.dbp.de



